BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'dielectric'

Books and proceedings

  1. Akira Ishimaru. Electromagnetic Wave Propagation Radiation and Scattering. John Wiley and Sons, Hoboken, New Jersey, 2017. Keyword(s): Scattering Theory, Wave Propagation, Radiation, Scattering, advanced analytical theory, dielectric slab, electromagnetic scattering, electromagnetic theory, electromagnetic wave propagation, excitation, Maxwell's equations, microwave waveguides, Wentzel-Kramers-Brillouim solution, boundary conditions, electromagnetic waves, energy relations, fundamental field equations, Hertz vectors, Poynting's theorem, reciprocity theorem, scalar acoustic waves, time-harmonic wave, Time-Reversal Imaging, Scattering by Turbulence, Particles, Diffuse Medium, Rough Surfaces, Coherence in Multiple Scattering, Diagram Method, Solitons, Optical Fibers, Porous Media, Permittivity, Fluid Permeability. [Abstract] [bibtex-entry]


  2. Leung Tsang, Jin Au Kong, and Kung-Hau Ding. Scattering of Electromagnetic Waves: Theories and Applications, volume 1. John Wiley & Sons, Inc., July 2000. [Abstract] [bibtex-entry]


Articles in journal or book chapters

  1. Simone Baffelli, Othmar Frey, and Irena Hajnsek. Polarimetric Analysis of Natural Terrain Observed With a Ku-Band Terrestrial Radar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(12):5268-5288, December 2019. Keyword(s): Terrestrical Radar, Polarimetry, Radar Polarimetry, ku-band, Gamma Portable Radar Interferometer, GPRI-II, Polarimetric Gamma Portable Radar Interferometer, PolGPRI, Entropy, ground based radar, polarimetric radar. [Abstract] [bibtex-entry]


  2. Franziska Koch, Patrick Henkel, Florian Appel, Lino Schmid, Heike Bach, Markus Lamm, Monika Prasch, J�rg Schweizer, and Wolfram Mauser. Retrieval of Snow Water Equivalent, Liquid Water Content, and Snow Height of Dry and Wet Snow by Combining GPS Signal Attenuation and Time Delay. Water Resources Research, 55(5):4465-4487, 2019. Keyword(s): GNSS, snow water equivalent, liquid water content, snow cover, SnowSense, GNSS signals, Global Positioning System. [Abstract] [bibtex-entry]


  3. Yang Lei, Paul Siqueira, and Robert Treuhaft. A physical scattering model of repeat-pass InSAR correlation for vegetation. Waves in Random and Complex Media, 27(1):129-152, 2017. Keyword(s): SAR Processing, Scattering Model, Interferometry, Correlation, Vegetation. [Abstract] [bibtex-entry]


  4. S. Leinss, H. Löwe, M. Proksch, J. Lemmetyinen, A. Wiesmann, and I. Hajnsek. Anisotropy of seasonal snow measured by polarimetric phase differences in radar time series. The Cryosphere, 10:1771-1797, 2016. Keyword(s): snow, anisotropy, SnowScat, polarimetric, copolar phase difference CPD.. [Abstract] [bibtex-entry]


  5. Silvan Leinss, Andreas Wiesmann, J. Lemmetyinen, and I. Hajnsek. Snow Water Equivalent of Dry Snow Measured by Differential Interferometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(8):3773-3790, August 2015. Keyword(s): radar interferometry, remote sensing by radar, snow, Finland, SnowScat instrument, Sodankyla town, Xand Ku-band, active microwave remote sensing method, differential interferogram time series, differential radar interferometry, dry snow measurement, frequency 10 GHz, frequency 16 GHz, frequency 20 GHz, passive microwave remote sensing method, phase wrapping error, reference instrument, signal delay, snow density, snow pack spatial inhomogeneity, snow volume, snow water equivalent mapping, stratigraphy, temporal decorrelation, time 30 day, Backscatter, Ice, Instruments, Interferometry, Snow, Synthetic aperture radar, Coherence loss, SnowScat, dielectric constant of snow, differential interferometry (D-InSAR), dry snow, microwave penetration of snow, real aperture radar, snow water equivalent (SWE), synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  6. S. B. Kim, Mahta Moghaddam, L. Tsang, Mariko S. Burgin, X. Xu, and E. G. Njoku. Models of L-Band Radar Backscattering Coefficients Over Global Terrain for Soil Moisture Retrieval. IEEE Transactions on Geoscience and Remote Sensing, 52(2):1381-1396, February 2014. Keyword(s): Maxwell equations, permittivity, remote sensing by radar, soil, time series, vegetation mapping, L-band radar backscattering coefficient models, Maxwell equations, RMS height, VWC, accurate soil moisture inversion, airborne data, airborne observation, bare surface, co-pol RMS errors, corn crop, datacube errors, dielectric soil constant, distorted Born approximation framework, double-bounce reflectivity, double-bounce volume-surface interaction, empirical formulae, empirical parameters, fast soil moisture inversion, field-based radar data, global land surface, global terrain, grass fields, in situ observation, independent spaceborne phased array type L-band synthetic aperture radars, input parameters, international geosphere-biosphere programme scheme, land surface class simulation, lookup tables, major crops, mean difference range, numerical solutions, physical model outputs, real-time soil moisture inversion, rice crop, shrub, single scatterer, soil moisture active passive mission data, soil moisture retrieval, soil surface root mean square, sophisticated forward model direct inversion, soybean crop, spaceborne Aquarius scatterometer data, surface scattering, theoretical models. [Abstract] [bibtex-entry]


  7. Francesco De Zan, A. Parizzi, Pau Prats-Iraola, and Paco López-Dekker. A SAR Interferometric Model for Soil Moisture. IEEE_J_GRS, 52(1):418-425, January 2014. Keyword(s): dielectric properties, hydrological techniques, radar interferometry, remote sensing by radar, soil, synthetic aperture radar, Born approximation, L-band airborne SAR data, SAR interferometric model, coherence magnitudes, complex interferometric coherences, geometrical properties, interferogram triplets, phase consistency, plane waves, quantitatively synthetic aperture radar interferometric observables, scattering models, soil moisture, tomography, vertical complex wavenumbers, Coherence, L-band, Moisture, Soil moisture, Synthetic aperture radar, synthetic aperture radar (SAR) interferometry. [Abstract] [bibtex-entry]


  8. Seung-Kuk Lee, Florian Kugler, Konstantinos P. Papathanassiou, and Irena Hajnsek. Quantification of Temporal Decorrelation Effects at L-Band for Polarimetric SAR Interferometry Applications. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3):1351-1367, June 2013. Keyword(s): SAR Processing, Decorrelation, Temporal Decorrelation, airborne radar, data acquisition, decorrelation, estimation theory, radar polarimetry, spaceborne radar, synthetic aperture radar, BioSAR 2007, L-band E-SAR repeat-pass data acquisition, Pol-InSAR forest parameter inversion, TempoSAR 2008, TempoSAR 2009, ground temporal decorrelation effect, height inversion error, interferometric repeat-pass mode, multibaseline Pol-InSAR data acquisition, polarimetric SAR interferometry application, quantitative estimation, rain-induced dielectric change, satellite airborne SAR system, temporal baseline estimation, time 10 min to 54 day, velocity 2 m/s, volume temporal decorrelation effect, Height inversion, polarimetric synthetic aperture radar interferometry (Pol-InSAR), temporal baseline, temporal decorrelation. [Abstract] [bibtex-entry]


  9. K. Morrison, J. C. Bennett, and M. Nolan. Using DInSAR to Separate Surface and Subsurface Features. IEEE_J_GRS, 51(6):3424-3430, June 2013. Keyword(s): radar imaging, radar interferometry, soil, synthetic aperture radar, C-band VV SAR images, DInSAR scheme, Ground-Based SAR Microwave Measurement Facility, SAR DInSAR, airborne platform, differential interferometric synthetic aperture radar, drying soil, moisture content, phase soil moisture, signal phase record, soil dielectric properties, spaceborne platform, volumetric soil moisture, Radar imaging, Soil measurements, Soil moisture, Spaceborne radar, Synthetic aperture radar, Dielectric materials, ground-penetrating radar, moisture measurement, permittivity measurement, radar signal analysis, radar signature, soil measurements, synthetic aperture imaging, synthetic aperture radar (SAR). [bibtex-entry]


  10. B. Minchew, C.E. Jones, and B. Holt. Polarimetric Analysis of Backscatter From the Deepwater Horizon Oil Spill Using L-Band Synthetic Aperture Radar. Geoscience and Remote Sensing, IEEE Transactions on, 50(10):3812-3830, October 2012. Keyword(s): AD 2010 06 23, Bragg scattering mechanism, DWH slick, Gulf of Mexico, L-band synthetic aperture radar, backscatter polarimetric analysis, coherency matrix eigenvalue, deepwater horizon, deepwater horizon oil spill, dielectric constant, entropy parameters, fully-polarimetric uninhabited aerial vehicle, ocean wave spectral components, oil slick, oil volumetric concentration, radar backscatter, sea water, slick detection method, substantial variation parameter, surface scattering analysis, synthetic aperture radar data, backscatter, eigenvalues and eigenfunctions, entropy, marine pollution, matrix algebra, ocean chemistry, ocean waves, oceanographic regions, oceanographic techniques, permittivity, radar interferometry, remote sensing by radar, seawater, synthetic aperture radar;. [Abstract] [bibtex-entry]


  11. Ricardo D. Monleone, Matteo Pastorino, Joaquim Fortuny-Guasch, Andrea Salvade, Thomas Bartesaghi, Giovanni Bozza, Manuela Maffongelli, Andrea Massimini, Andrea Carbonetti, and Andrea Randazzo. Impact of Background Noise on Dielectric Reconstructions Obtained by a Prototype of Microwave Axial Tomograph. IEEE Transactions on Instrumentation and Measurement, 61(1):140-148, January 2012. Keyword(s): Tomography, Axial Tomography, dielectric measurement, error analysis, interference (signal), microwave imaging, tomography, background noise, dielectric object inspection, dielectric reconstruction, error parameter, interference signal, measurement environment, microwave axial tomograph, Anechoic chambers, Dielectrics, Image reconstruction, Laboratories, Permittivity, Permittivity measurement, Electromagnetic Interference, imaging systems, inverse problems, microwave sensor, microwave tomography, nondestructive testing. [Abstract] [bibtex-entry]


  12. Alireza Tabatabaeenejad, Mariko S. Burgin, and Mahta Moghaddam. Potential of L-Band Radar for Retrieval of Canopy and Subcanopy Parameters of Boreal Forests. IEEE Transactions on Geoscience and Remote Sensing, 50(6):2150-2160, June 2012. Keyword(s): calibration, data analysis, forestry, remote sensing by radar, simulated annealing, soil, vegetation mapping, AD 2010 06, Jet Propulsion Laboratory, L-band radar, National Aeronautics and Space Administration, SMAP mission, Uninhabited Aerial Vehicle Synthetic Aperture Radar, absolute retrieval error analysis, calibration method, canopy parameter retrieval, central Canada boreal forests, discrete scatterer radar model, forest structure, forward scattering model, global optimization scheme, inversion method, old black spruce site, old jack pine forests, optimization algorithm, optimization problem, relative retrieval error, scattering mechanisms, simulated annealing, soil moisture information, subcanopy parameter retrieval, surface soil moisture retrieval, synthetic data, vegetation parameters, young jack pine forests, Backscatter, Dielectric constant, L-band, Radar, Scattering, Soil moisture, Vegetation mapping, Allometric relationships, Canadian Experiment for Soil Moisture in 2010 (CanEx-SM10), L-band radar, Soil Moisture Active and Passive (SMAP), boreal forest, canopy, inverse problem, microwave scattering. [Abstract] [bibtex-entry]


  13. D.J. Sego, H. Griffiths, and M.C. Wicks. Waveform and aperture design for low-frequency RF tomography. IET Radar, Sonar Navigation, 5(6):686-696, July 2011. Keyword(s): SAR Processing, SAR Tomography, Tomography, RF spectral environment, aperture Fourier surface, frequency selection, high vertical resolution circular SAR, image quality metrics, image resolution, image sidelobe, low-frequency RF tomography, spectrally sparse narrowband waveforms, ultrawideband waveforms, image resolution, radar imaging, synthetic aperture radar, tomography;. [Abstract] [bibtex-entry]


  14. P. M. L. Drezet and S. Quegan. Environmental effects on the interferometric repeat-pass coherence of forests. IEEE_J_GRS, 44(4):825-837, April 2006. Keyword(s): backscatter, dielectric properties, forestry, radiowave interferometry, remote sensing by radar, synthetic aperture radar, vegetation mapping, C-band one-day tandem coherence measurement, SAR, dielectric backscattering coefficient, environmental effects, forest canopy coherence, interferometric repeat-pass coherence, moisture conditions, moisture fluctuations, soil moisture, soil-vegetation-atmosphere transfer model, synthetic aperature radar, vegetation, wind conditions, Backscatter, Coherence, Coupled mode analysis, Dielectric measurements, Fluctuations, Moisture measurement, Predictive models, Satellites, Soil measurements, Wind, dielectric, dynamic, forest, multitemporal, synthetic aperature radar (SAR). [bibtex-entry]


  15. Franz Meyer, Richard Bamler, N. Jakowski, and Thomas Fritz. The Potential of Low-Frequency SAR Systems for Mapping Ionospheric TEC Distributions. IEEE_J_GRSL, 3(4):560-564, October 2006. Keyword(s): SAR Processing, electron density, ionosphere, ionospheric techniques, microwave propagation, synthetic aperture radar, SAR signal properties, broadband L-band SAR, broadband microwave radiation, correlation technique, dispersive media, group delay, interferometric technique, ionospheric TEC distribution mapping, ionospheric propagation effects, low-frequency SAR systems, phase advance, total electron content, two-frequency global positioning system observations, Delay systems, Dielectrics, Dispersion, Electrons, Ionosphere, L-band, Position measurement, Refractive index, Signal mapping, Synthetic aperture radar, Atmospheric effects, L-band SAR, SAR interferometry, correlation, synthetic aperture radar (SAR), total electron content (TEC). [Abstract] [bibtex-entry]


  16. Rafael Zandoná-Schneider, K.P. Papathanassiou, Irena Hajnsek, and Alberto Moreira. Polarimetric and interferometric characterization of coherent scatterers in urban areas. IEEE Trans. Geosci. Remote Sens., 44(4):971-984, 2006. Keyword(s): SAR Processing, Persistent Scatterer Interferometry, PSI, Selection of point target candidates, backscatter, radar imaging, radar polarimetry, radiowave interferometry, remote sensing by radar, synthetic aperture radar, L-band radar, SAR interferometry, SAR polarimetry, airborne SAR data, orientation angle, point-like coherent scatterers, quadpolarized images, synthetic aperture radar, urban areas, Azimuth, Data mining, Interferometry, Object detection, Polarimetry, Radar detection, Radar scattering, Synthetic aperture radar, Urban areas, Coherent scatterers, SAR interferometry, SAR polarimetry, orientation angle, polarimetric SAR interferometry, synthetic aperture radar (SAR), urban areas. [Abstract] [bibtex-entry]


  17. C. Elachi, S. Wall, M. Allison, Y. Anderson, R. Boehmer, P. Callahan, P. Encrenaz, E. Flamini, G. Franceschetti, Y. Gim, G. Hamilton, S. Hensley, M. Janssen, W. Johnson, K. Kelleher, R. Kirk, R. Lopes, R. Lorenz, J. Lunine, D. Muhleman, S. Ostro, F. Paganelli, G. Picardi, F. Posa, L. Roth, R. Seu, S. Shaffer, L. Soderblom, B. Stiles, E. Stofan, S. Vetrella, R. West, C. Wood, L. Wye, and H. Zebker. Cassini Radar Views the Surface of Titan. Science, 308(5724):970-974, 2005. Keyword(s): SAR Processing, Cassini Radar, Saturn, astronomical instruments, planetary satellites, radar applications, radioastronomy, space vehicles, Cassini Saturn Mission, Cassini Titan Radar Mapper, Titan, antenna configuration, design constraints, multimode radar, radar modes, surface imaging, topographic mapping, Instruments, Laser radar, Moon, Optical design, Payloads, Probes, Radar antennas, Radar imaging, Saturn, Surface topography. [Abstract] [bibtex-entry]


  18. F. Gustrau and A. Bahr. W-band investigation of material parameters, SAR distribution, and thermal response in human tissue. IEEE Transactions on Microwave Theory and Techniques, 50(10):2393-2400, October 2002. Keyword(s): SAR Processing, W-Band, bioelectric phenomena, biological effects of microwaves, biological tissues, biothermics, dosimetry, eye, finite difference time-domain analysis, health hazards, infrared imaging, skin, 3 to 100 GHz, 77 GHz, Gunn oscillator, SAR distribution, W-band dielectric properties, analytical method, dosimetry, electromagnetic field, eye tissue, finite-difference time-domain method, horn antenna, human eye, human tissue, layered skin model, maximum local SAR values, maximum temperature increase, millimeter-wave irradiation, plane-wave exposure, porcine eye, safety guidelines, skin, specific absorption rate, superficial tissue, temperature changes, thermal bio-heat-transfer simulation, thermal infrared imaging system, thermal response, Antenna measurements, Biological materials, Biological system modeling, Biological tissues, Dielectric materials, Electromagnetic fields, Humans, Millimeter wave measurements, Skin, Temperature. [Abstract] [bibtex-entry]


  19. Ari Sihvola. Mixing Rules with Complex Dielectric Coefficients. Subsurface Sensing Technologies and Applications, 1(4):393-415, 2000. Keyword(s): Microwave, Mixing Rules, Dielectric Property, Complex Permittivity, Dielectric Response, depolarization factors, depolarization factors for an ellipsoid. [Abstract] [bibtex-entry]


  20. Christian Matzler and Andreas Wiesmann. Extension of the Microwave Emission Model of Layered Snowpacks to Coarse-Grained Snow. Remote Sensing of Environment, 70(3):317-325, December 1999. Keyword(s): MEMLS, Snow, Microwave, Microwave emission model of lalayer snowpacks, Dielectric Properties of Dry Snow, relative permittivity, snow density. [Abstract] [bibtex-entry]


  21. Andreas Wiesmann and Christian Matzler. Microwave emission model of layered snowpacks. Remote Sensing of Environment, 70(3):307-316, 1999. Keyword(s): MEMLS, Snow, Microwave, Microwave emission model of lalayer snowpacks, Dielectric Properties of Dry Snow, relative permittivity, snow density. [Abstract] [bibtex-entry]


  22. Anthony Freeman and Stephen L. Durden. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens., 36(3):963-973, May 1998. Keyword(s): SAR Processing, Polarimetric Decomposition, Freeman-Durden Decomposition, Bragg scatter, backscatter, canopy scatter, composite scattering model, double-bounce scatter, flooding, forest, geophysical measurement technique, inundation, land surface, orthogonal surface, polarimetric SAR, radar polarimetry, radar remote sensing, radar scattering, randomly oriented dipoles, rough surface, synthetic aperture radar, terrain mapping, three-component scattering model, tropical rain forest, vegetation mapping, backscatter, forestry, geophysical techniques, radar cross-sections, radar polarimetry, radar theory, remote sensing by radar, synthetic aperture radar;. [Abstract] [bibtex-entry]


  23. Didier Massonnet and Kurt L. Feigl. Radar interferometry and its application to changes in the Earth's surface. Reviews of Geophysics, 36(4):441-500, 1998. Keyword(s): Permeability and porosity. [Abstract] [bibtex-entry]


  24. Christian Matzler. Microwave permittivity of dry snow. IEEE Transactions on Geoscience and Remote Sensing, 34(2):573-581, 1996. Keyword(s): UHF measurement, hydrological equipment, permittivity, snow, -10 to 0 degC, 1 GHz, Austrian Alps, Swiss Alps, average axial ratio, coaxial sensor, density, destructive metamorphism, dry snow, ice grains, ice volume fraction, liquid-like surface layer, microwave permittivity, oblate spheroids, physical mixing theory, prolate spheroids, relative dielectric constant, relative permittivity, resometer, resonator, sintering, Coaxial components, Dielectric constant, Dielectric measurements, Frequency, Ice, Instruments, Measurement standards, Permittivity measurement, Snow, Testing. [Abstract] [bibtex-entry]


  25. V.I. Lytle and K.C. Jezek. Dielectric permittivity and scattering measurements of Greenland firn at 26.5-40 GHz. IEEE Transactions on Geoscience and Remote Sensing, 32(2):290-295, March 1994. Keyword(s): Radar, Radar Remote Sensing, Microwave Remote Sensing, Dielectric permittivity, scattering measurements, Greenland firn, firn, Greenland, 26.5-40 GHz, Ka-band, snow, remote sensing of snow. [Abstract] [bibtex-entry]


  26. Christian Matzler. Microwave (1-100 GHz) dielectric model of leaves. IEEE Transactions on Geoscience and Remote Sensing, 32(4):947-949, 1994. [bibtex-entry]


  27. Christian Matzler and Urs Wegmuller. Dielectric properties of freshwater ice at microwave frequencies. Journal of Physics D: Applied Physics, 20(12):1623, 1987. [Abstract] [bibtex-entry]


  28. Martti T. Hallikainen, Fawwaz Ulaby, and Mohamed Abdelrazik. Dielectric properties of snow in the 3 to 37 GHz range. IEEE Transactions on Antennas and Propagation, 34(11):1329-1340, November 1986. Keyword(s): Dielectric measurements, Density measurement, Dielectric measurements, Frequency, Predictive models, Scattering, Shape measurement, Size measurement, Snow, Temperature distribution, Volume measurement. [Abstract] [bibtex-entry]


  29. L. Essen and K. D. Froome. The Refractive Indices and Dielectric Constants of Air and its Principal Constituents at 24,000 Mc/s. Proceedings of the Physical Society. Section B, 64(10):862, 1951. [Abstract] [bibtex-entry]


Conference articles

  1. H.P. Tran, F. Gumbmann, J. Weinzierl, and L.P. Schmidt. A Fast Scanning W-Band System for Advanced Millimetre-Wave Short Range Imaging Applications. In Proc. European Radar Conference, pages 146-149, September 2006. Keyword(s): SAR Processing, W-Band, broadband antennas, focusing, frequency response, millimetre wave antennas, millimetre wave imaging, millimetre wave measurement, radar antennas, radar imaging, scanning antennas, synthetic aperture radar, SAR, antenna, broadband frequency response, conical horn, dielectric lens, focused bistatic measurement setup, free space millimetre-wave imaging setup, planar test object, scanning W-band system, synthetic aperture radar algorithm, unfocused measurement setup, Antenna measurements, Costs, Dielectric losses, Dielectric measurements, Distortion measurement, Electromagnetic measurements, Focusing, Lenses, Microwave imaging, Thickness measurement. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:23:06 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html