BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'Laser radar'

Articles in journal or book chapters

  1. G. H. X. Shiroma and M. Lavalle. Digital Terrain, Surface, and Canopy Height Models From InSAR Backscatter-Height Histograms. IEEE Transactions on Geoscience and Remote Sensing, 58(6):3754-3777, June 2020. Keyword(s): backscatter, forestry, optical radar, radar imaging, radar interferometry, radar polarimetry, remote sensing by radar, synthetic aperture radar, vegetation, vegetation mapping, digital terrain, canopy height models, InSAR backscatter-height histogram, interferometric synthetic aperture radar backscatter-height histograms, single-look backscatter measurements, InSAR phase height, InSAR histogram, LiDAR waveforms, ground topography, full-polarimetric L-band uninhabited aerial vehicle synthetic aperture radar data, forest height, Histograms, Laser radar, Forestry, Vegetation mapping, Backscatter, Synthetic aperture radar, Digital elevation models (DEMs), forest height, interferometry, L-band, polarimetric synthetic aperture radar (SAR) interferometry (PolInSAR), polarimetry, SAR. [Abstract] [bibtex-entry]


  2. Elias Méndez Doměnguez, Christophe Magnard, Erich Meier, David Small, Michael E. Schaepman, and Daniel Henke. A Back-Projection Tomographic Framework for VHR SAR Image Change Detection. IEEE Transactions on Geoscience and Remote Sensing, 57(7):4470-4484, July 2019. Keyword(s): Synthetic aperture radar, Tomography, Backscatter, Apertures, Laser radar, Image resolution, Detectors, Image processing, Markov processes, synthetic aperture radar (SAR), tomography, urban areas. [Abstract] [bibtex-entry]


  3. Stephan Palm, Rainer Sommer, and Uwe Stilla. Mobile Radar Mapping --- Subcentimeter SAR Imaging of Roads. IEEE Transactions on Geoscience and Remote Sensing, 56(11):6734-6746, November 2018. Keyword(s): SAR Processing, Azimuth Focusing, FMCW, Back Projection, Time-Domain Back-Projection, TDBP, FFBP, Fast-Factorized Back-Projection, CW radar, digital elevation models, FM radar, geophysical image processing, Global Positioning System, image reconstruction, image resolution, radar imaging, remote sensing by radar, synthetic aperture radar, mobile radar mapping-subcentimeter SAR imaging, ultrahigh-resolution synthetic aperture radar data, related theoretical background, imaging method, backprojection techniques, potential errors, correct geometry, imaging quality, point target simulations, suitable digital elevation model, illuminated scene, conventional roads, mobile mapping scenarios, SAR images, output data, reference targets, GPS-INS data, conventional 3-D Point Cloud Software, geometric distortions, subcentimeter SAR imaging, active frequency-modulated continuous wave radar system, frequency 300.0 GHz, Synthetic aperture radar, Sensors, Radar imaging, Roads, Laser radar, Geometry, Millimeter wave radar, radar resolution, radar signal processing, road vehicle radar. [Abstract] [bibtex-entry]


  4. Matteo Pardini, Marivi Tello, Victor Cazcarra-Bes, K. P. Papathanassiou, and I. Hajnsek. L- and P-Band 3-D SAR Reflectivity Profiles Versus Lidar Waveforms: The AfriSAR Case. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(10):3386-3401, October 2018. Keyword(s): SAR Processing, SAR Tomography, airborne radar, backscatter, forestry, geophysical techniques, optical radar, radar imaging, radar polarimetry, remote sensing by laser beam, remote sensing by radar, synthetic aperture radar, vegetation, vegetation mapping, NASA Land, Ice Sensor lidar datasets, AfriSAR campaign, LVIS data, plot field measurements, ground-to-volume power ratio, physical forest structure descriptors, vertical structure indices, 3-D radar reflectivity, LVIS profiles, P-band 3-D, AfriSAR case, P-band vertical backscattering profiles, synthetic aperture radar tomography, light detection, DLR F-SAR, tropical forest structure types, Forestry, Synthetic aperture radar, Laser radar, Radar tracking, L-band, Vegetation, Forest structure, full waveforms, light detection and ranging (lidar), SAR tomography (TomoSAR), synthetic aperture radar (SAR), tropical forest. [Abstract] [bibtex-entry]


  5. H. Yu, Y. Lan, J. Xu, D. An, and Hyonki Lee. Large-Scale ${L}^{0}$ -Norm and ${L}^{1}$ -Norm 2-D Phase Unwrapping. IEEE Transactions on Geoscience and Remote Sensing, 55(8):4712-4728, August 2017. Keyword(s): SAR Processing, Phase Unwrapping, radar interferometry, remote sensing by radar, signal processing, synthetic aperture radar, InSAR technology, L0-norm 2D phase unwrapping, L1-norm 2D phase unwrapping, L1-norm envelope-sparsity theorem, big-data, computer hardware, global L1-norm PU solution, local L1-norm PU solution, subinterferograms, synthetic aperture radar interferometry, tiling accuracy, tiling resolution, tiling strategy, Hardware, Laser radar, Laser theory, Memory management, Optimization, Spatial resolution, Synthetic aperture radar interferometry, 2-D phase unwrapping (PU), L1-norm, L0-norm, large scale, synthetic aperture radar interferometry (InSAR), tiling strategy. [Abstract] [bibtex-entry]


  6. Scott Hensley, D. Moller, S. Oveisgharan, T. Michel, and X. Wu. Ka-Band Mapping and Measurements of Interferometric Penetration of the Greenland Ice Sheets by the GLISTIN Radar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(6):2436-2450, June 2016. Keyword(s): Global Positioning System, geophysical image processing, hydrological techniques, ice, image segmentation, meteorological radar, optical radar, radar interferometry, snow, synthetic aperture radar, topography (Earth), Antarctica, Earth environment, GLISTIN elevation measurement, GLISTIN instrument, GLISTIN radar, Greenland ice sheet, Jakobshavn glacier area, Ka-band cross-track interferometric radar, Ka-band mapping, NASA GLISTIN Ka-band interferometric radar, NASA Wallop airborne terrain mapper lidar measurement, climate change, ice cap topography, ice surface topography, image mosaic, interferometric penetration, interferometric penetration measurement, interferometric radar mapping system, kinematic GPS survey measurement, lidar, optical system, swath topographic measurement, Ice, Instruments, Laser radar, Sea measurements, Snow, Surfaces, Glaciers, Ka-band, ice sheets, interferometry, penetration, radar. [Abstract] [bibtex-entry]


  7. Francesco Banda and Stefano Tebaldini. Texture-Free Absolute DEM Retrieval From Opposite-Side Multibaseline InSAR Data. IEEE Geosci. Remote Sens. Lett., PP(99):1-5, 2015. Keyword(s): SAR Processing, Multibaseline InSAR, Accuracy, Azimuth, Estimation, Laser radar, Radar tracking, Synthetic aperture radar, Tomography, Digital elevation model (DEM), radargrammetry, synthetic aperture radar interferometry (InSAR). [Abstract] [bibtex-entry]


  8. Maciej J. Soja, H. Persson, and Lars M. H. Ulander. Estimation of Forest Height and Canopy Density From a Single InSAR Correlation Coefficient. IEEE Geosci. Remote Sens. Lett., 12(3):646-650, March 2015. Keyword(s): digital elevation models, geophysical image processing, parameter estimation, radar interferometry, remote sensing by radar, synthetic aperture radar, vegetation mapping, AD 2011 to 2013, VV-polarized bistatic-interferometric TanDEM-X image pairs, canopy density, forest height estimation, hemiboreal test site Remningstorp, high-resolution digital terrain model, single InSAR correlation coefficient, southern Sweden, synthetic aperture radar, two-level model, vegetation, Backscatter, Coherence, Laser radar, Remote sensing, Synthetic aperture radar, Time division multiplexing, Vegetation, Canopy density, TanDEM-X, forest height, interferometric model, interferometry, synthetic aperture radar (SAR), two-level model (TLM). [Abstract] [bibtex-entry]


  9. A. Elsherbini and K. Sarabandi. Mapping of Sand Layer Thickness in Deserts Using SAR Interferometry. IEEE_J_GRS, 48(9):3550-3559, September 2010. Keyword(s): electromagnetic wave scattering, geophysical image processing, geophysical techniques, radar interferometry, remote sensing by radar, sand, synthetic aperture radar, terrain mapping, topography (Earth), Ka InSAR, SAR interferometry, Saudi Arabia, aperture radar system, bedrock topography, desert area, groundwater exploration, inversion algorithm, oil field, radar imaging, sand layer thickness, sand topography, sensitivity analysis, subsurface imaging, Costs, Explosives, Laser radar, Light scattering, Optical scattering, Petroleum, Radar scattering, Seismic waves, Surfaces, Synthetic aperture radar interferometry, Interferometric synthetic aperture radar (InSAR). [bibtex-entry]


  10. C. Elachi, S. Wall, M. Allison, Y. Anderson, R. Boehmer, P. Callahan, P. Encrenaz, E. Flamini, G. Franceschetti, Y. Gim, G. Hamilton, S. Hensley, M. Janssen, W. Johnson, K. Kelleher, R. Kirk, R. Lopes, R. Lorenz, J. Lunine, D. Muhleman, S. Ostro, F. Paganelli, G. Picardi, F. Posa, L. Roth, R. Seu, S. Shaffer, L. Soderblom, B. Stiles, E. Stofan, S. Vetrella, R. West, C. Wood, L. Wye, and H. Zebker. Cassini Radar Views the Surface of Titan. Science, 308(5724):970-974, 2005. Keyword(s): SAR Processing, Cassini Radar, Saturn, astronomical instruments, planetary satellites, radar applications, radioastronomy, space vehicles, Cassini Saturn Mission, Cassini Titan Radar Mapper, Titan, antenna configuration, design constraints, multimode radar, radar modes, surface imaging, topographic mapping, Instruments, Laser radar, Moon, Optical design, Payloads, Probes, Radar antennas, Radar imaging, Saturn, Surface topography. [Abstract] [bibtex-entry]


  11. Didier Massonnet and Thierry Rabaute. Radar interferometry: limits and potential. IEEE Trans. Geosci. Remote Sens., 31(2):455-464, 1993. Keyword(s): SAR Processing, electromagnetic wave interferometry, geophysical techniques, image processing, remote sensing by radar, topography (Earth), accuracy, differential interferometry, digital terrain modeling, height restitution, image pair, image processing, orbital geometry, phase ambiguity, radar interferometry, topography, Geometrical optics, Instruments, Laser radar, Optical interferometry, Optical sensors, Radar antennas, Radar imaging, Radar interferometry, Spaceborne radar, Synthetic aperture radar. [Abstract] [bibtex-entry]


  12. Charles Elachi, Eastwood Im, Ladislav E. Roth, and Charles L. Werner. Cassini Titan Radar Mapper. Proceedings of the IEEE, 79(6):867-880, June 1991. Keyword(s): SAR Processing, Cassini Radar, Saturn, astronomical instruments, planetary satellites, radar applications, radioastronomy, space vehicles, Cassini Saturn Mission, Cassini Titan Radar Mapper, Titan, antenna configuration, design constraints, multimode radar, radar modes, surface imaging, topographic mapping, Instruments, Laser radar, Moon, Optical design, Payloads, Probes, Radar antennas, Radar imaging, Saturn, Surface topography. [Abstract] [bibtex-entry]


  13. Carl A. Wiley. Synthetic Aperture Radars. IEEE Trans. Aerosp. Electron. Syst., AES-21(3):440-443, May 1985. Keyword(s): SAR Processing, Azimuth Focusing, Synthetic Aperture Radar, Adaptive optics, Airborne radar, Aircraft, Doppler radar, Laser radar, Optical signal processing, Radar imaging, Radar signal processing, Railway engineering, Synthetic aperture radar. [Abstract] [bibtex-entry]


Conference articles

  1. Ning Cao, Hyongki Lee, Evan Zaugg, Ramesh Shrestha, William E. Carter, Craig Glennie, Zhong Lu, and Juan Carlos Fernandez Diaz. Evaluation of an airborne SAR system for deformation mapping: A case study over the slumgullion landslide. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 1684-1687, July 2017. Keyword(s): SAR Processing, Interferometry, SAR Interferometry, InSAR, Differential SAR Interferometry, DInSAR, Repeat-Pass Interferometry, deformation monitoring, subsidence monitoring, Displacement, Earth, Global Positioning System, Laser radar, Spaceborne radar, Strain, Synthetic aperture radar, Terrain factors, GPS, Landslide, LiDAR, SAR. [Abstract] [bibtex-entry]


  2. G. Connan, H. D. Griffiths, and P. V. Brennan. FMCW-SAR development for internal wave imaging. In OCEANS '97. MTS/IEEE Conference Proceedings, volume 1, pages 73-78 vol.1, October 1997. Keyword(s): SAR Processing, W-Band, CW radar, FM radar, electromagnetic wave scattering, oceanographic equipment, oceanographic techniques, radar cross-sections, radar equipment, radar imaging, radar polarimetry, remote sensing by radar, synthetic aperture radar, 94 GHz, EHF, FMCW radar, MORSE, Mesoscale Ocean Radar Signature Experiments, SAR, W-band, internal wave, measurement technique, millimetre wave radar, millimetric radar, mm wave, model, ocean dynamics, radar imaging, radar polarimetry, radar remote sensing, synthetic aperture imaging, synthetic aperture radar, ultra-high-resolution SAR, Azimuth, Hydrodynamics, Laboratories, Laser radar, Radar antennas, Radar imaging, Sea surface, Spaceborne radar, Surface topography, Surface waves. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:23:54 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html