BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'canopy'

Thesis

  1. Albert Monteith. Temporal Characteristics of Boreal Forest Radar Measurements. PhD thesis, Chalmers University of Technology, 2020. Keyword(s): SAR Tomography, BorealScat. [Abstract] [bibtex-entry]


Articles in journal or book chapters

  1. Ilgin Seker and Marco Lavalle. Tomographic Performance of Multi-Static Radar Formations: Theory and Simulations. Remote Sensing, 13(4), 2021. Keyword(s): SAR Processing, SAR Tomography, Multibaseline SAR, Multistatic SAR, Simulations, Spaceborne SAR, Airborne SAR. [Abstract] [bibtex-entry]


  2. G. H. X. Shiroma and M. Lavalle. Digital Terrain, Surface, and Canopy Height Models From InSAR Backscatter-Height Histograms. IEEE Transactions on Geoscience and Remote Sensing, 58(6):3754-3777, June 2020. Keyword(s): backscatter, forestry, optical radar, radar imaging, radar interferometry, radar polarimetry, remote sensing by radar, synthetic aperture radar, vegetation, vegetation mapping, digital terrain, canopy height models, InSAR backscatter-height histogram, interferometric synthetic aperture radar backscatter-height histograms, single-look backscatter measurements, InSAR phase height, InSAR histogram, LiDAR waveforms, ground topography, full-polarimetric L-band uninhabited aerial vehicle synthetic aperture radar data, forest height, Histograms, Laser radar, Forestry, Vegetation mapping, Backscatter, Synthetic aperture radar, Digital elevation models (DEMs), forest height, interferometry, L-band, polarimetric synthetic aperture radar (SAR) interferometry (PolInSAR), polarimetry, SAR. [Abstract] [bibtex-entry]


  3. Ibrahim El Moussawi, Dinh Ho Tong Minh, Nicolas Baghdadi, Chadi Abdallah, Jalal Jomaah, Olivier Strauss, Marco Lavalle, and Yen-Nhi Ngo. Monitoring Tropical Forest Structure Using SAR Tomography at L- and P-Band. Remote Sensing, 11(16), 2019. [Abstract] [bibtex-entry]


  4. Unmesh Khati, Marco Lavalle, and Gulab Singh. Spaceborne tomography of multi-species Indian tropical forests. Remote Sensing of Environment, 229:193-212, 2019. Keyword(s): SAR Processing, SAR Tomography, TomoSAR, Tomography, TanDEM-X, TerraSAR-X, Tropical, Forest, India, Spaceborne SAR, X-band. [Abstract] [bibtex-entry]


  5. Matteo Pardini, Marivi Tello, Victor Cazcarra-Bes, K. P. Papathanassiou, and I. Hajnsek. L- and P-Band 3-D SAR Reflectivity Profiles Versus Lidar Waveforms: The AfriSAR Case. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(10):3386-3401, October 2018. Keyword(s): SAR Processing, SAR Tomography, airborne radar, backscatter, forestry, geophysical techniques, optical radar, radar imaging, radar polarimetry, remote sensing by laser beam, remote sensing by radar, synthetic aperture radar, vegetation, vegetation mapping, NASA Land, Ice Sensor lidar datasets, AfriSAR campaign, LVIS data, plot field measurements, ground-to-volume power ratio, physical forest structure descriptors, vertical structure indices, 3-D radar reflectivity, LVIS profiles, P-band 3-D, AfriSAR case, P-band vertical backscattering profiles, synthetic aperture radar tomography, light detection, DLR F-SAR, tropical forest structure types, Forestry, Synthetic aperture radar, Laser radar, Radar tracking, L-band, Vegetation, Forest structure, full waveforms, light detection and ranging (lidar), SAR tomography (TomoSAR), synthetic aperture radar (SAR), tropical forest. [Abstract] [bibtex-entry]


  6. Yang Lei, Paul Siqueira, and Robert Treuhaft. A physical scattering model of repeat-pass InSAR correlation for vegetation. Waves in Random and Complex Media, 27(1):129-152, 2017. Keyword(s): SAR Processing, Scattering Model, Interferometry, Correlation, Vegetation. [Abstract] [bibtex-entry]


  7. S. Zwieback and I. Hajnsek. Influence of Vegetation Growth on the Polarimetric Zero-Baseline DInSAR Phase Diversity ---Implications for Deformation Studies. IEEE_J_GRS, 54(5):3070-3082, May 2016. Keyword(s): crops, geophysical techniques, radar interferometry, radar polarimetry, remote sensing by radar, synthetic aperture radar, L-band zero-baseline data set, agricultural crop, barley, crop type, deformation study, differential SAR interferometry, displacement estimation, growing season, in situ observed biomass, maize, polarimetric DInSAR phase diversity, polarimetric coherence region, polarization diversity, sugar beet, vegetation canopy, vegetation effect, vegetation growth effect, wheat, zero-baseline DInSAR phase diversity, Coherence, Interferometry, Synthetic aperture radar, Systematics, Vegetation, Vegetation mapping, Birefringence, radar remote sensing, vegetation. [bibtex-entry]


  8. Marco Lavalle and Scott Hensley. Extraction of Structural and Dynamic Properties of Forests From Polarimetric-Interferometric SAR Data Affected by Temporal Decorrelation. IEEE Trans. Geosci. Remote Sens., 53(9):4752-4767, September 2015. Keyword(s): SAR Processing, Decorrelation, Temporal Decorrelation, Gaussian processes, optical radar, radar imaging, radar interferometry, radar polarimetry, synthetic aperture radar, vegetation mapping, Gaussian-statistic motion model, Harvard Forest, L-band NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar, Laser Vegetation and Ice Sensor, Massachussetts, NASA lidar, RMoG model, RVoG model, USA, canopy elements, canopy motion, forest biomass estimation, forest dynamic property, forest property estimation, forest structural property, forest vertical structure, least square distance minimization, lidar-derived height, multiplicative factors, polarimetric channels, polarimetric-interferometric SAR data, polarimetric-interferometric coherence, polarimetric-interferometric radar image, random-motion-over-ground model, random-volume-over-ground model, temporal coherence, temporal decorrelation effect, tree height, volumetric coherence, volumetric decorrelation effect, wave polarization, Biomass, Coherence, Data models, Decorrelation, Radar, Vegetation, Decorrelation, interferometry, polarimetry. [Abstract] [bibtex-entry]


  9. Maciej J. Soja, H.J. Persson, and Lars M.H. Ulander. Estimation of Forest Biomass From Two-Level Model Inversion of Single-Pass InSAR Data. IEEE Trans. Geosci. Remote Sens., 53(9):5083-5099, September 2015. Keyword(s): data acquisition, digital elevation models, forestry, radar interferometry, remote sensing by radar, synthetic aperture radar, vegetation, AD 2008, AD 2010, AD 2011, AD 2012, AD 2013, InSAR processing, Krycklan feature, Remningstorp feature, Swedish test site, VV-polarized TanDEM-X acquisition, aboveground biomass estimation, biomass predictor, canopy density, digital terrain model, forest biomass estimation, forest height, hemiboreal forest, northern Sweden, single-pass InSAR data, single-pass interferometric synthetic aperture radar data, southern Sweden, two-level model inversion, Biological system modeling, Biomass, Computational modeling, Correlation, Decorrelation, Estimation, Synthetic aperture radar, Aboveground biomass (AGB), TanDEM-X (TDM), canopy density, forest height, interferometric model, interferometric syntheticaperture radar (InSAR), two-level model (TLM). [Abstract] [bibtex-entry]


  10. Maciej J. Soja, H. Persson, and Lars M. H. Ulander. Estimation of Forest Height and Canopy Density From a Single InSAR Correlation Coefficient. IEEE Geosci. Remote Sens. Lett., 12(3):646-650, March 2015. Keyword(s): digital elevation models, geophysical image processing, parameter estimation, radar interferometry, remote sensing by radar, synthetic aperture radar, vegetation mapping, AD 2011 to 2013, VV-polarized bistatic-interferometric TanDEM-X image pairs, canopy density, forest height estimation, hemiboreal test site Remningstorp, high-resolution digital terrain model, single InSAR correlation coefficient, southern Sweden, synthetic aperture radar, two-level model, vegetation, Backscatter, Coherence, Laser radar, Remote sensing, Synthetic aperture radar, Time division multiplexing, Vegetation, Canopy density, TanDEM-X, forest height, interferometric model, interferometry, synthetic aperture radar (SAR), two-level model (TLM). [Abstract] [bibtex-entry]


  11. Alireza Tabatabaeenejad, Mariko S. Burgin, X. Duan, and Mahta Moghaddam. P-Band Radar Retrieval of Subsurface Soil Moisture Profile as a Second-Order Polynomial: First AirMOSS Results. IEEE Transactions on Geoscience and Remote Sensing, 53(2):645-658, February 2015. Keyword(s): hydrological techniques, remote sensing by radar, vegetation, AD 2012 09, AD 2012 10, AirMOSS mission flights, AirMOSS results, Airborne Microwave Observatory of Sub- canopy and Subsurface, Arizona, P-band radar data, Root Mean Squared Error, Walnut Gulch Experimental Watershed, barren terrain, discrete scattering model, radar pixel, second-order polynomial, shrubland terrain, subsurface depth function, subsurface soil moisture profile, synthetic radar data, terrain radar backscattering coefficients, vegetated terrain, Atmospheric modeling, Data models, Moisture, Polynomials, Radar, Soil moisture, Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), discrete scattering model, quadratic function, radar, remote sensing, second-order polynomial, simulated annealing, soil moisture profile. [Abstract] [bibtex-entry]


  12. Marc Simard, Scott Hensley, Marco Lavalle, Ralph Dubayah, Naiara Pinto, and Michelle Hofton. An Empirical Assessment of Temporal Decorrelation Using the Uninhabited Aerial Vehicle Synthetic Aperture Radar over Forested Landscapes. Remote Sensing, 4(4):975-986, 2012. Keyword(s): SAR Processing, Decorrelation, Temporal Decorrelation, Differential Interferometry, DInSAR, SAR Interferometry, Coherence, Airborne SAR, UAVSAR, L-Band. [Abstract] [bibtex-entry]


  13. Alireza Tabatabaeenejad, Mariko S. Burgin, and Mahta Moghaddam. Potential of L-Band Radar for Retrieval of Canopy and Subcanopy Parameters of Boreal Forests. IEEE Transactions on Geoscience and Remote Sensing, 50(6):2150-2160, June 2012. Keyword(s): calibration, data analysis, forestry, remote sensing by radar, simulated annealing, soil, vegetation mapping, AD 2010 06, Jet Propulsion Laboratory, L-band radar, National Aeronautics and Space Administration, SMAP mission, Uninhabited Aerial Vehicle Synthetic Aperture Radar, absolute retrieval error analysis, calibration method, canopy parameter retrieval, central Canada boreal forests, discrete scatterer radar model, forest structure, forward scattering model, global optimization scheme, inversion method, old black spruce site, old jack pine forests, optimization algorithm, optimization problem, relative retrieval error, scattering mechanisms, simulated annealing, soil moisture information, subcanopy parameter retrieval, surface soil moisture retrieval, synthetic data, vegetation parameters, young jack pine forests, Backscatter, Dielectric constant, L-band, Radar, Scattering, Soil moisture, Vegetation mapping, Allometric relationships, Canadian Experiment for Soil Moisture in 2010 (CanEx-SM10), L-band radar, Soil Moisture Active and Passive (SMAP), boreal forest, canopy, inverse problem, microwave scattering. [Abstract] [bibtex-entry]


  14. Othmar Frey and Erich Meier. Analyzing Tomographic SAR Data of a Forest With Respect to Frequency, Polarization, and Focusing Technique. IEEE Trans. Geosci. Remote Sens., 49(10):3648-3659, October 2011. Keyword(s): Airborne radar, Array signal processing, Capon, Capon beamformer, L-band, P-band, SAR processing, SAR tomography, beamforming, Focusing, forestry, interferometry, InSAR, multibaseline, multiple signal classification, MUSIC, polarimetry, Remote Sensing, synthetic aperture radar, SAR, scattering, three-dimensional imaging, 3-D imaging, time-domain back-projection, TDBP, tomography, Vegetation. [Abstract] [bibtex-entry]


  15. Dawei Liu, Guoqing Sun, Zhifeng Guo, K.J. Ranson, and Yang Du. Three-Dimensional Coherent Radar Backscatter Model and Simulations of Scattering Phase Center of Forest Canopies. IEEE Trans. Geosci. Remote Sens., 48(1):349-357, January 2010. Keyword(s): 3D coherent radar backscatter model, InSAR signals, SAR interferometric data, canopy height, canopy spatial structure, forest canopies, forest stand, forest structural parameters, ground surface backscattering, interferometric SAR, scattering phase center simulations, synthetic aperture radar, time delay, backscatter, geophysical signal processing, radar interferometry, remote sensing by radar, synthetic aperture radar, vegetation;. [Abstract] [bibtex-entry]


  16. Maxim Neumann, Laurent Ferro-Famil, and Andreas Reigber. Estimation of Forest Structure, Ground, and Canopy Layer Characteristics From Multibaseline Polarimetric Interferometric SAR Data. IEEE Trans. Geosci. Remote Sens., 48(3):1086-1104, March 2010. Keyword(s): SAR Processing, Multibaseline SAR, Germany, PolInSAR, RVoG, vertical structure, Traunstein test site, airborne SAR, L-band, angular distribution, canopy layer heights, differential extinction, double-bounce ground-trunk interactions, forest layer heights, forest parameter retrieval, forest structure estimation, forest vegetation, ground topography, ground-to-volume ratio, ground-truth measurements, interferometric coherence, particle scattering anisotropy, polarimetric Synthetic Aperture Radar interferometry, polarimetric decomposition, polarimetric scattering media model, polarization orientation randomness, random-volume-over-ground PolInSAR parameter inversion, repeat-pass configuration, root-mean-square error, surface scattering, temporal decorrelation, tree morphology, volume coherency matrices, volumetric canopy, volumetric understory scattering, wave attenuation, radar interferometry, radar polarimetry, remote sensing by radar, synthetic aperture radar, vegetation mapping;. [Abstract] [bibtex-entry]


  17. P. M. L. Drezet and S. Quegan. Environmental effects on the interferometric repeat-pass coherence of forests. IEEE_J_GRS, 44(4):825-837, April 2006. Keyword(s): backscatter, dielectric properties, forestry, radiowave interferometry, remote sensing by radar, synthetic aperture radar, vegetation mapping, C-band one-day tandem coherence measurement, SAR, dielectric backscattering coefficient, environmental effects, forest canopy coherence, interferometric repeat-pass coherence, moisture conditions, moisture fluctuations, soil moisture, soil-vegetation-atmosphere transfer model, synthetic aperature radar, vegetation, wind conditions, Backscatter, Coherence, Coupled mode analysis, Dielectric measurements, Fluctuations, Moisture measurement, Predictive models, Satellites, Soil measurements, Wind, dielectric, dynamic, forest, multitemporal, synthetic aperature radar (SAR). [bibtex-entry]


  18. J.L. Gomez-Dans, S. Quegan, and J.C. Bennett. Indoor C-band polarimetric interferometry observations of a mature wheat canopy. IEEE Trans. Geosci. Remote Sens., 44(4):768-777, April 2006. Keyword(s): SAR Processing, SAR Tomography, Tomography, 2D scan, HH polarization, VH polarization, VV polarization, crop height retrieval, ground-based synthetic aperture radar, incidence angle, indoor C-band polarimetric interferometry observation, polarimetric coherence optimization, polarimetric tomography, polarization synthesis, unconstrained coherence optimization, vegetation monitoring, wheat canopy, crops, radar polarimetry, radiowave interferometry, remote sensing by radar, synthetic aperture radar, vegetation mapping;. [Abstract] [bibtex-entry]


  19. K. Sarabandi and Y.-C. Lin. Simulation of interferometric SAR response for characterizing the scattering phase center statistics of forest canopies. IEEE Trans. Geosci. Remote Sens., 38(1):115-125, January 2000. Keyword(s): InSAR, Monte Carlo simulation, SAR, backscatter, coherent scattering model, equivalent scatterer, forest, forest canopy, forestry, fractal, geophysical measurement technique, interferometric SAR, physical parameters, radar remote sensing, radar theory, scatterer collection, scattering phase center statistics, simulation, synthetic aperture radar, vegetation mapping, Monte Carlo methods, backscatter, forestry, fractals, geophysical techniques, radar cross-sections, radar theory, remote sensing by radar, synthetic aperture radar, vegetation mapping;. [Abstract] [bibtex-entry]


  20. S.R. Cloude, J. Fortuny, J.M. Lopez-Sanchez, and A.J. Sieber. Wide-band polarimetric radar inversion studies for vegetation layers. IEEE Transactions on Geoscience and Remote Sensing, 37(5):2430-2441, September 1999. Keyword(s): backscatter, forestry, geophysical techniques, image classification, radar cross-sections, radar polarimetry, remote sensing by radar, synthetic aperture radar, vegetation mappingbackscatter, canopy, complex volume scattering, entropy-alpha target decomposition scheme, ficus tree, fig, fir tree, forest, geophysical measurement technique, image classification scheme, inversion algorithm, parametric inversion, polarimetric radar inversion, radar scattering, radar theory, random particle cloud model, small anisotropic particles, two-parameter model, vegetation layer, vegetation mapping, wide band method. [Abstract] [bibtex-entry]


  21. R. N. Treuhaft and S. R. Cloude. The structure of oriented vegetation from polarimetric interferometry. IEEE Trans. Geosci. Remote Sens., 37(5):2620-2624, September 1999. Keyword(s): SAR Processing, Forest, Forest parameters, biomass, forest canopy, forestry, geophysical measurement technique, height, oriented object, oriented vegetation, oriented-vegetation volume, polarimetric interferometry, radar polarimetry, radar remote sensing, randomly oriented volume, single-baseline polarimetric interferometry, underlying topography, vegetated land surface, vegetation mapping, geophysical techniques, radar polarimetry, remote sensing by radar, vegetation mapping. [Abstract] [bibtex-entry]


  22. S.R. Cloude and Konstantinos P. Papathanassiou. Polarimetric SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 36(5):1551-1565, September 1998. Keyword(s): SAR Processing, PolInSAR, geophysical techniques, radar imaging, radar polarimetry, radar theory, remote sensing by radar, synthetic aperture radarInSAR, coherence optimization problem, elevated forest canopy, general formulation, geophysical measurement technique, interferogram, interferometric SAR, interferometric coherence, land surface, linear combinations, maximization, polarimetric SAR interferometry, polarimetric basis transformation, radar remote sensing, scalar interferometry, stochastic scattering model, strong polarization dependency, synthetic aperture radar, terrain mapping, vector wave interferometry, SAR Tomography. [Abstract] [bibtex-entry]


  23. Anthony Freeman and Stephen L. Durden. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens., 36(3):963-973, May 1998. Keyword(s): SAR Processing, Polarimetric Decomposition, Freeman-Durden Decomposition, Bragg scatter, backscatter, canopy scatter, composite scattering model, double-bounce scatter, flooding, forest, geophysical measurement technique, inundation, land surface, orthogonal surface, polarimetric SAR, radar polarimetry, radar remote sensing, radar scattering, randomly oriented dipoles, rough surface, synthetic aperture radar, terrain mapping, three-component scattering model, tropical rain forest, vegetation mapping, backscatter, forestry, geophysical techniques, radar cross-sections, radar polarimetry, radar theory, remote sensing by radar, synthetic aperture radar;. [Abstract] [bibtex-entry]


  24. Marc L. Imhoff. Radar backscatter and biomass saturation: ramifications for global biomass inventory. IEEE Transactions on Geoscience and Remote Sensing, 33(2):511-518, March 1995. Keyword(s): SAR Processing, backscatter, forestry, geophysical techniques, radar applications, radar cross-sections, radar imaging, remote sensing by radar, synthetic aperture radar, 0.44 to 5.3 GHz, C-band, Hawaii, L-band, P-band, SAR, UHF SHF microwave, biomass saturation, biome, broadleaf evergreen forest, canopy, coniferous forest, geophysical measurement technique, global biomass inventory, land surface, phytomass, radar backscatter, radar remote sensing, vegetated surface, vegetation mapping, Space-borne SAR, SAR Tomography, Tomography. [Abstract] [bibtex-entry]


  25. Sasan S. Saatchi, D. M. Le Vine, and R. H. Lang. Microwave backscattering and emission model for grass canopies. IEEE Trans. Geosci. Remote Sens., 32(1):177-186, January 1994. Keyword(s): atmospheric techniques, atmospheric temperature, geophysical techniques, hydrological techniques, radiometry, remote sensing, remote sensing by radar, soil, temperature measurement, 1.4 GHz, 4.75 GHz, C-band, L-band, UHF SHF, distorted Born approximation, elliptical disc, emission model, emissivity, geophysical measurement technique, grass canopies, grassland, hydrology, land surface, microwave backscattering, model, radar cross section, radar remote sensing, soil moisture, thatch layer, vegetation, vegetation canopy, wet Konza prairie, Backscatter, Electromagnetic heating, L-band, Microwave measurements, Microwave radiometry, Moisture measurement, Radar cross section, Radar measurements, Soil measurements, Soil moisture. [Abstract] [bibtex-entry]


Conference articles

  1. Ludovic Brucker, Christopher Hiemstra, Hans-Peter Marshall, Kelly Elder, Roger De Roo, Mohammad Mousavi, Francis Bliven, Walt Peterson, Jeffrey Deems, Peter Gadomski, Arthur Gelvin, Lucas Spaete, Theodore Barnhart, Ty Brandt, John Burkhart, Christopher Crawford, Tri Datta, Havard Erikstrod, Nancy Glenn, Katherine Hale, Brent Holben, Paul Houser, Keith Jennings, Richard Kelly, Jason Kraft, Alexandre Langlois, Daniel McGrath, Chelsea Merriman, Noah Molotch, Anne Nolin, Chris Polashenski, Mark Raleigh, Karl Rittger, Chago Rodriguez, Alexandre Roy, McKenzie Skiles, Eric Small, Marco Tedesco, Chris Tennant, Aaron Thompson, Liuxi Tian, Zach Uhlmann, Ryan Webb, and Matt Wingo. A first overview of SnowEx ground-based remote sensing activities during the winter 2016-2017. In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pages 1391-1394, July 2017. [Abstract] [bibtex-entry]


  2. Stefano Tebaldini, Fabio Rocca, and A Monti-Guarnieri. Model Based SAR Tomography of Forested Areas. In IEEE International Geoscience and Remote Sensing Symposium, volume 2, pages 593-596, July 2008. Keyword(s): SAR Processing, SAR Tomography, Tomography, E-SAR, P-Band. [Abstract] [bibtex-entry]


  3. Andreas Reigber, Maxim Neumann, Stephane Guillaso, Stefan Sauer, and Laurent Ferro-Famil. Evaluating PolInSAR parameter estimation using tomographic imaging results. In Proc. European Radar Conf., pages 189-192, 2005. Keyword(s): SAR Processing, SAR Tomography, Tomography, forestry, matrix algebra, radar imaging, radar polarimetry, radiowave interferometry, remote sensing by radar, synthetic aperture radar, tomography, vegetation mapping, PolInSAR parameter estimation, canopy, forest height, ground topography estimation, polarimetric SAR interferometry, tomographic imaging results. [Abstract] [bibtex-entry]


  4. Shane R. Cloude and Konstantinos P. Papathanassiou. Three-stage inversion process for polarimetric SAR interferometry. In , volume 150, pages 125-134, June 2003. Keyword(s): SAR Processing, decorrelation, electromagnetic wave scattering, inverse problems, parameter estimation, radar imaging, radar polarimetry, remote sensing by radar, synthetic aperture radar geometrical approach, ground topography, interferograms, inversion accuracy, mean extinction estimation, model structure, multiple polarisation channels, parameter estimates, polarimetric SAR interferometry, random canopy, simulated vector coherent SAR data, single frequency sensor, temporal decorrelation, three-stage inversion process, two-layer coherent scattering model, vegetation height, vertical tree structure. [Abstract] [bibtex-entry]


  5. M. Rombach and Joćo Moreira. Description and applications of the multipolarized dual band OrbiSAR-1 InSAR sensor. In Radar Conference, 2003. Proceedings of the International, volume 5, pages 245-250, 2003. Keyword(s): electromagnetic wave reflection, electromagnetic wave scattering, radar polarimetry, remote sensing by radar, Spaceborne SAR, synthetic aperture radar, terrain mapping, topography (Earth), vegetation mapping, OrbiSAR-1 InSAR sensor, area mapping, bald earth height information, biomass, canopy top foliage scattering, digital elevation, forest-classification, ground elevation, interferometric SAR, multipolarized dual band InSAR sensor, permanent cloud covered tropical areas, soil reflection, surface elevation, topographic maps, trunk reflection, vegetation density, vegetation height, vegetation/microwave interaction. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:22:51 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html