BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'Atmospheric modeling'

Articles in journal or book chapters

  1. Simone Baffelli, Othmar Frey, and Irena Hajnsek. Geostatistical Analysis and Mitigation of the Atmospheric Phase Screens in Ku-Band Terrestrial Radar Interferometric Observations of an Alpine Glacier. IEEE Transactions on Geoscience and Remote Sensing, 58(11):7533-7556, November 2020. Keyword(s): Gamma Portable Radar Interferometer, GPRI, Pol-GPRI, Atmospheric modeling, Spaceborne radar, Atmospheric measurements, Radar interferometry, Delays, Phase measurement, Atmospheric modeling, atmospheric phase screen (APS), differential radar interferometry, terrestrial radar interferometry, TRI. [Abstract] [bibtex-entry]


  2. Marion Heublein, Fadwa Alshawaf, Bastian Erdnüss, Xiao Xiang Zhu, and Stefan Hinz. Compressive sensing reconstruction of 3D wet refractivity based on GNSS and InSAR observations. Journal of Geodesy, 93(2):197-217, 2019. Keyword(s): SAR Processing, Compressive Sensing, Tropospheric Path Delay, Synthetic Aperture Radar, Atmospheric Modelling, Atmospheric modeling, Meteorology, radar interferometry, synthetic aperture radar (SAR), SAR Tomography, GNSS, InSAR, Tropospheric Wet Path Delay. [Abstract] [bibtex-entry]


  3. Andrea Monti Guarnieri, Antonio Leanza, Andrea Recchia, Stefano Tebaldini, and Giovanna Venuti. Atmospheric Phase Screen in GEO-SAR: Estimation and Compensation. IEEE Transactions on Geoscience and Remote Sensing, 56(3):1668-1679, 2018. Keyword(s): SAR Processing, geosynchronous SAR, Synthetic Aperture Radar, Autofocus, Atmospheric Modelling, Apertures, Atmospheric modeling, Azimuth, Delays, Estimation, Orbits, Synthetic aperture radar, Meteorology, radar clutter, radar imaging, radar interferometry, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  4. D. Li, M. Rodriguez-Cassola, P. Prats-Iraola, M. Wu, and A. Moreira. Reverse Backprojection Algorithm for the Accurate Generation of SAR Raw Data of Natural Scenes. IEEE Geoscience and Remote Sensing Letters, 14(11):2072-2076, November 2017. Keyword(s): data acquisition, geophysical image processing, remote sensing by radar, synthetic aperture radar, tropospheric electromagnetic wave propagation, reverse backprojection algorithm, SAR raw data, natural scenes, SAR image formation sibling, multistatic SAR missions, synthetic aperture radar mission concepts, geosynchronous SAR missions, observation geometry, acquisition strategy, atmospheric propagation, Synthetic aperture radar, Low earth orbit satellites, Azimuth, Atmospheric modeling, Standards, Algorithm design and analysis, Data models, Azimuth variation, backprojection algorithm, geosynchronous (GEO) SAR, raw data simulation, synthetic aperture radar (SAR), terrain observation with progressive scan (TOPS), tropospheric propagation. [Abstract] [bibtex-entry]


  5. Simone Mancon, Andrea Monti Guarnieri, Davide Giudici, and Stefano Tebaldini. On the Phase Calibration by Multisquint Analysis in TOPSAR and Stripmap Interferometry. IEEE Trans. Geosci. Remote Sens., 55(1):134-147, January 2017. Keyword(s): SAR Processing, SAR Interferometry, Atmospheric modeling, Interferometry, Orbits, Spaceborne radar, Synthetic aperture radar, Target tracking, Trajectory, Calibration, TOPSAR, interferometry, multisquint phase, spaceborne, synthetic aperture radar, SAR, Spaceborne SAR. [bibtex-entry]


  6. Fadwa Alshawaf, T. Fuhrmann, A. Knöpfler, X. Luo, Michael Mayer, Stefan Hinz, and B. Heck. Accurate Estimation of Atmospheric Water Vapor Using GNSS Observations and Surface Meteorological Data. IEEE Transactions on Geoscience and Remote Sensing, 53(7):3764-3771, July 2015. Keyword(s): atmospheric humidity, atmospheric temperature, remote sensing, satellite navigation, time series, remote sensing data, temporal variation, spatial variation, Global Navigation Satellite System, time series, precipitable water vapor content, precise point positioning, absolute precipitable water vapor, GNSS observations, GNSS site, surface temperature measurements, GNSS-based delay, MEdium Resolution Imaging Spectrometer sensor, mean RMS value, GNSS-based total precipitable water vapor, Weather Research and Forecasting Modeling System, WRF model simulations, atmospheric water vapor estimation, surface meteorological data, Global Positioning System, Delays, Temperature measurement, Atmospheric modeling, Atmospheric measurements, Satellites, Atmospheric sounding, Global Navigation Satellite System(s) (GNSS), MEdium Resolution Imaging Spectrometer (MERIS), precipitable water vapor (PWV), Weather Research and Forecasting (WRF), Atmospheric sounding, Global Navigation Satellite System(s) (GNSS), MEdium Resolution Imaging Spectrometer (MERIS), precipitable water vapor (PWV), Weather Research and Forecasting (WRF). [Abstract] [bibtex-entry]


  7. Fadwa Alshawaf, Stefan Hinz, Michael Mayer, and Franz J. Meyer. Constructing accurate maps of atmospheric water vapor by combining interferometric synthetic aperture radar and GNSS observations. Journal of Geophysical Research: Atmospheres, 120(4):1391-1403, 2015. Keyword(s): SAR Processing, atmospheric water vapor, InSAR, GNSS, Tropospheric Path Delay, Synthetic Aperture Radar, Atmospheric Modelling, Atmospheric modeling, Meteorology, radar clutter, radar imaging, radar interferometry, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  8. Alireza Tabatabaeenejad, Mariko S. Burgin, X. Duan, and Mahta Moghaddam. P-Band Radar Retrieval of Subsurface Soil Moisture Profile as a Second-Order Polynomial: First AirMOSS Results. IEEE Transactions on Geoscience and Remote Sensing, 53(2):645-658, February 2015. Keyword(s): hydrological techniques, remote sensing by radar, vegetation, AD 2012 09, AD 2012 10, AirMOSS mission flights, AirMOSS results, Airborne Microwave Observatory of Sub- canopy and Subsurface, Arizona, P-band radar data, Root Mean Squared Error, Walnut Gulch Experimental Watershed, barren terrain, discrete scattering model, radar pixel, second-order polynomial, shrubland terrain, subsurface depth function, subsurface soil moisture profile, synthetic radar data, terrain radar backscattering coefficients, vegetated terrain, Atmospheric modeling, Data models, Moisture, Polynomials, Radar, Soil moisture, Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), discrete scattering model, quadratic function, radar, remote sensing, second-order polynomial, simulated annealing, soil moisture profile. [Abstract] [bibtex-entry]


  9. Ze Yu, Zhou Li, and Shusen Wang. An Imaging Compensation Algorithm for Correcting the Impact of Tropospheric Delay on Spaceborne High-Resolution SAR. IEEE Transactions on Geoscience and Remote Sensing, 53(9):4825-4836, September 2015. Keyword(s): SAR Processing, SAR Focusing, Azimuth Focusing, Autofocus, Motion Compensation, atmospheric electromagnetic wave propagation, delays, geophysical image processing, image filtering, image resolution, radar cross-sections, radar imaging, remote sensing by radar, spaceborne radar, synthetic aperture radar, troposphere, imaging compensation algorithm, tropospheric delay, spaceborne high-resolution SAR, atmospheric refraction, electromagnetic signalpropagation speed, propagation path delay, geometrical straight-line path, spaceborne synthetic aperture radar, imaging filter, rectilinear propagation, residual phase, focusing quality, focusing performance, spaceborne SAR echo model, range delay coefficient, European Geostationary Navigation Overlay Service model, zenith delay, Niell mapping function, looking direction, range compensation, classical imaging, azimuth compensation, Delays, Synthetic aperture radar, Atmospheric modeling, Focusing, Data models, Real-time systems, High-resolution imaging, phase compensation, synthetic aperture radar (SAR), tropospheric delay, High-resolution imaging, phase compensation. [Abstract] [bibtex-entry]


  10. Lorenzo Iannini and Andrea Monti Guarnieri. Atmospheric Phase Screen in Ground-Based Radar: Statistics and Compensation. IEEE Geoscience and Remote Sensing Letters, 8(3):537-541, May 2011. Keyword(s): atmospheric electromagnetic wave propagation, atmospheric humidity, atmospheric pressure, atmospheric techniques, atmospheric temperature, radiowave propagation, remote sensing by radar, APS removal, Bolzano, Italy, atmospheric humidity, atmospheric phase screen evaluation, atmospheric phase screen removal, atmospheric pressure, atmospheric temperature, compensation approach, ground based radar, initial calibration step, meteorological parameters, time varying delay statistics, Atmospheric modeling, Calibration, Coherence, Delay, Humidity, Radar, Refractive index, Atmospheric artifact compensation, differential interferometry, ground-based radar (GB-RADAR). [Abstract] [bibtex-entry]


  11. L. Pipia, X. Fabregas, A. Aguasca, and C. Lopez-Martinez. Atmospheric Artifact Compensation in Ground-Based DInSAR Applications. IEEE Geosci. Remote Sens. Lett., 5(1):88-92, January 2008. Keyword(s): GB-SAR, ground-based SAR, terrestrial SAR, atmospheric humidity, atmospheric pressure, atmospheric techniques, atmospheric temperature, radar interferometry, synthetic aperture radar, AD 2005 06, Barcelona, Collserola Park, Spain, Universitat Politecnica de Catalunya, atmosphere variations, atmospheric artifact compensation, coherence-based technique, differential interferometry Synthetic Aperture Radar, ground-Based DInSAR applications, heterogeneous environment, interferometric information, polarimetric measurements, Atmosphere, Atmospheric measurements, Atmospheric modeling, Information retrieval, Interferometry, Layout, Sensor phenomena and characterization, Sensor systems, Synthetic aperture radar, Testing, Differential interferometric SAR (DInSAR), GB-SAR sensor, polarimetric SAR (PolSAR), synthetic aperture radar (SAR). [bibtex-entry]


  12. Oscar Mora, Jordi J. Mallorquì, and Antoni Broquetas. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans. Geosci. Remote Sens., 41(10):2243-2253, October 2003. Keyword(s): SAR Processing, geophysical signal processing, radar imaging, radiowave interferometry, remote sensing by radar, synthetic aperture radar, terrain mapping, topography (Earth), DEM, Delauney triangulation, atmospheric artifacts, coherence level, digital elevation model, filtering techniques, interferometric SAR images, linear terrain deformation maps, low spatial resolution interferograms, nonlinear terrain deformation maps, nonuniform mesh, remote sensing, synthetic aperture radar, topographic terms, Atmospheric modeling, Coherence, Digital elevation models, Information filtering, Information filters, Information retrieval, Remote sensing, Spatial resolution, Synthetic aperture radar, Testing, PSI, Persistent Scatterer Interferometry. [Abstract] [bibtex-entry]


Conference articles

  1. Charles L. Werner, Urs Wegmuller, Tazio Strozzi, and Andreas Wiesmann. Interferometric point target analysis for deformation mapping. In Proc. IEEE Int. Geosci. Remote Sens. Symp., volume 7, pages 4362-4364, 2003. Keyword(s): SAR Processing, Interferometry, SAR Interferometry, Persistent Scatterer Interferometry, PSI, Interferometric Point Target Analysis, IPTA, synthetic aperture radar, terrain mapping, ERS-1 data, ERS-2 data, atmospheric path delays, deformation mapping, interferometric point target analysis, surface deformation, Atmospheric modeling, Decorrelation, Delay, History, Ice, Interferometry, Land surface, Phase noise, Remote sensing, Volcanic activity. [Abstract] [bibtex-entry]


  2. Charles Werner, Urs Wegmuller, Andreas Wiesmann, and Tazio Strozzi. Interferometric point target analysis with JERS-1 L-band SAR data. In Proc. IEEE Int. Geosci. Remote Sens. Symp., volume 7, pages 4359-4361, July 2003. IEEE. Keyword(s): SAR Processing, Interferometry, SAR Interferometry, Persistent Scatterer Interferometry, PSI, Interferometric Point Target Analysis, IPTA, L-band, Atmospheric modeling, Deformable models, Phase estimation, Atmosphere, Testing, Surface topography, Azimuth, Remote sensing, Sensor phenomena and characterization, topography, synthetic aperture radar, spaceborne radar, remote sensing by radar, radiowave interferometry, geophysical techniques, subsidence, JERS-1 L-band SAR data, long-term coherence, surface deformation, Koga, Japan. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:22:42 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html