BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'Microwave remote sensing'

Books and proceedings

  1. Jakob Van Zyl and Yunjin Kim. Synthetic Aperture Radar Polarimetry. John Wiley & Sons, Inc., 2011. Keyword(s): SAR Processing, SAR, Polarimetry, SAR Polarimetry, Synthetic Aperture Radar, Scattering, Microwave Remote Sensing, Remote Sensing, Polarization, Scattering Models, Microwave Scattering, Electromagnetic Scattering, calibration algorithms, polarimetric calibration, calibration, scattering from rough surfaces, surface scattering, soil moisture. [Abstract] [bibtex-entry]


  2. Adrian K. Fung and K. S. Chen. Microwave Scattering and Emission Models for Users. Artech House, Boston, London, 2010. Keyword(s): Remote Sensing, Physics, Microwaves, Scattering, Scattering Models, Emission models, Emission, actice, passive, passive microwace, microwave remote sensing, radar, radar remote sensing, radar scattering, backscatter models, microwave scattering models, microwave emission models, radar scattering models, Earth and Environmental Sciences, Computational Science and Modelling. [bibtex-entry]


  3. Alessandro Ferretti, Andrea Monti-Guarnieri, Claudio Prati, Fabio Rocca, and Didier Massonnet. InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation, Part A: Interferometric SAR image processing and interpretation. ESA, 2007. Keyword(s): SAR Processing, InSAR, SAR Interferometry, Interferometry, ESA, ESA-TM-19. [Abstract] [bibtex-entry]


  4. Leung Tsang, Jin Au Kong, and Kung-Hau Ding. Scattering of Electromagnetic Waves: Theories and Applications, volume 1. John Wiley & Sons, Inc., July 2000. [Abstract] [bibtex-entry]


Articles in journal or book chapters

  1. Melody Sandells, Henning Loewe, Ghislain Picard, Marie Dumont, Richard Essery, Nicolas Floury, Anna Kontu, Juha Lemmetyinen, William Maslanka, Samuel Morin, Andreas Wiesmann, and Christian Matzler. X-Ray Tomography-Based Microstructure Representation in the Snow Microwave Radiative Transfer Model. IEEE Transactions on Geoscience and Remote Sensing, 60(4301115):1-15, 2022. Keyword(s): Snow, Microstructure, Snow microstructure, X-ray, tomography, X-ray tomography, microwave, microwave scattering, SMRT, SMRTmodel, snow, snow microwave radiative transfer (SMRT), microwave remote sensing, radar, radar remote sensing, Nordic Snow Radar Experiment, NoSREx. [Abstract] [bibtex-entry]


  2. Chuan Xiong, Jiancheng Shi, Jinmei Pan, Haokui Xu, Tao Che, Tianjie Zhao, Yan Ren, Deyuan Geng, Tao Chen, Kaiwen Jiang, and Peng Feng. Time Series X- and Ku-Band Ground-Based Synthetic Aperture Radar Observation of Snow-Covered Soil and Its Electromagnetic Modeling. IEEE Transactions on Geoscience and Remote Sensing, 60:1-13, 2022. Keyword(s): Snow, X-band, Ku-band, times series. [Abstract] [bibtex-entry]


  3. M. Kern, R. Cullen, B. Berruti, J. Bouffard, T. Casal, M. R. Drinkwater, A. Gabriele, A. Lecuyot, M. Ludwig, R. Midthassel, I. Navas Traver, T. Parrinello, G. Ressler, E. Andersson, C. Martin-Puig, O. Andersen, A. Bartsch, S. Farrell, S. Fleury, S. Gascoin, A. Guillot, A. Humbert, E. Rinne, A. Shepherd, M. R. van den Broeke, and J. Yackel. The Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) high-priority candidate mission. The Cryosphere, 14(7):2235-2251, 2020. Keyword(s): ice, snow, polar ice, polar snow, radar, radar altimeter, altimeter, Ku-band, Ka-band, CRISTAL, Copernicus Polar Ice and Snow Topography Altimeter, remote sensing, radar remote sensing, microwave, microwave remote sensing. [bibtex-entry]


  4. J. Matar, M. Rodriguez-Cassola, G. Krieger, P. Lopez-Dekker, and A. Moreira. MEO SAR: System Concepts and Analysis. IEEE Transactions on Geoscience and Remote Sensing, 58(2):1313-1324, February 2020. Keyword(s): Orbits, Sensitivity, Synthetic aperture radar, Antennas, Spatial resolution, Low earth orbit satellites, Coverage, medium-Earth-orbit (MEO) synthetic aperture radar (SAR), orbits, SAR, space radiation, system performance.. [Abstract] [bibtex-entry]


  5. Aaron Thompson, Richard Kelly, and Joshua King. Sensitivity of Ku- and X-Band Radar Observations to Seasonal Snow in Ontario, Canada. Canadian Journal of Remote Sensing, 45(6):829-846, 2019. Keyword(s): Microwave remote sensing, radar, radar remote sensing, Snow, Snow Water Equivalent (SWE), remote sensing of snow, seasonal snow, Ku-band, X-band. [Abstract] [bibtex-entry]


  6. Othmar Frey. Synthetic Aperture Radar. In Douglas Richardson, editor, International Encyclopedia of Geography: People, the Earth, Environment, and Technology, pages 1-24. Wiley, 2017. Keyword(s): Synthetic Aperture Radar, SAR, Imaging, microwave imaging, radar systems, biosphere, carbon sequestration, co-seismic displacement, crustal deformation, data acquisition, digital earth, earth observation, earth system science, geocomputation, geodesy, geohazards, geomatics, geophysical signal processing, geospatial information, GIScience, ground deformation/subsidence monitoring, interferometry, land cover, land use change, mapping, microwave remote sensing, polarimetry, radar remote sensing, remote sensing, topography, volcano monitoring. [Abstract] [bibtex-entry]


  7. S. K. Chan, R. Bindlish, P. E. O'Neill, E. Njoku, T. Jackson, A. Colliander, F. Chen, Mariko S. Burgin, S. Dunbar, J. Piepmeier, S. Yueh, D. Entekhabi, M. H. Cosh, T. Caldwell, J. Walker, X. Wu, A. Berg, T. Rowlandson, A. Pacheco, H. McNairn, M. Thibeault, J. Martinez-Fernandez, Angel Gonzalez-Zamora, M. Seyfried, D. Bosch, P. Starks, D. Goodrich, J. Prueger, M. Palecki, E. E. Small, M. Zreda, J. C. Calvet, W. T. Crow, and Y. Kerr. Assessment of the SMAP Passive Soil Moisture Product. IEEE Transactions on Geoscience and Remote Sensing, 54(8):4994-5007, August 2016. Keyword(s): hydrological techniques, moisture, remote sensing by radar, soil, L-band radar, L-band radiometer, Level 2 Passive Soil Moisture Product, NASA Distributed Active Archive Center at the National Snow and Ice Data Center, NASA SMAP satellite mission, National Aeronautics and Space Administration, SMAP Passive Soil Moisture product, V-pol Single Channel Algorithm, freeze-thaw state, high-resolution soil moisture global mapping, radar irrecoverable hardware failure, radiometer-only soil moisture product, soil moisture estimates, soil moisture retrievals, Agriculture, Data models, Microwave radiometry, NASA, Soil moisture, Spatial resolution, Brightness temperature, L-band, Level 2 Passive Soil Moisture Product, Level 3 Daily Composite Version, Soil Moisture Active Passive (SMAP), land emission, passive microwave remote sensing, soil moisture, tau-omega model, validation. [Abstract] [bibtex-entry]


  8. J. Pan, M. Durand, M. Sandells, J. Lemmetyinen, E. J. Kim, J. Pulliainen, A. Kontu, and C. Derksen. Differences Between the HUT Snow Emission Model and MEMLS and Their Effects on Brightness Temperature Simulation. IEEE Transactions on Geoscience and Remote Sensing, 54(4):2001-2019, April 2016. Keyword(s): radiative transfer, remote sensing, snow, HUT snow emission model, Helsinki University of Technology, brightness temperature simulation, snow water equivalent retrieval algorithm, passive microwave measurement, multiple-layer HUT model, Microwave Emission Model of Layered Snowpacks, scattered intensity, radiative transfer equation, one-flux equation, two-flux theory, HUT scattering coefficient, trapped-radiation, natural snow cover, Sodankyla, Finland, Churchill, Canada, Colorado, USA, snow grain size was, deep snow, Born approximation, root-mean-square error, Snow, Mathematical model, Scattering, Grain size, Microwave theory and techniques, Ice, Correlation, Model comparison, passive microwave remote sensing, snow, Model comparison, passive microwave remote sensing, snow. [Abstract] [bibtex-entry]


  9. Silvan Leinss, Andreas Wiesmann, J. Lemmetyinen, and I. Hajnsek. Snow Water Equivalent of Dry Snow Measured by Differential Interferometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(8):3773-3790, August 2015. Keyword(s): radar interferometry, remote sensing by radar, snow, Finland, SnowScat instrument, Sodankyla town, Xand Ku-band, active microwave remote sensing method, differential interferogram time series, differential radar interferometry, dry snow measurement, frequency 10 GHz, frequency 16 GHz, frequency 20 GHz, passive microwave remote sensing method, phase wrapping error, reference instrument, signal delay, snow density, snow pack spatial inhomogeneity, snow volume, snow water equivalent mapping, stratigraphy, temporal decorrelation, time 30 day, Backscatter, Ice, Instruments, Interferometry, Snow, Synthetic aperture radar, Coherence loss, SnowScat, dielectric constant of snow, differential interferometry (D-InSAR), dry snow, microwave penetration of snow, real aperture radar, snow water equivalent (SWE), synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  10. Simon H. Yueh, Steve J. Dinardo, Ahmed Akgiray, Richard West, Donald W. Cline, and Kelly Elder. Airborne Ku-Band Polarimetric Radar Remote Sensing of Terrestrial Snow Cover. IEEE Transactions on Geoscience and Remote Sensing, 47(10):3347-3364, October 2009. Keyword(s): snow, ku-band, airborne radar, backscatter, hydrological techniques, ice, radar cross-sections, radar polarimetry, remote sensing by radar, snow, vegetation, AD 2006 to 2008, CLPX-II, Cold Land Processes Experiment, Colorado, HH/VV backscatter ratio, Ku-band polarimetric scatterometer, POLSCAT data acquisition, USA, airborne Ku-band polarimetric radar, biomass, freeze-thaw cycles, ice crust layers, ice lenses, radar echoes, radar signals, radiative transfer scattering model, remote sensing, snow-grain size, snow-water-equivalent accumulation, snowpack change, surface hoar growth, terrestrial snow cover, vegetation types, Microwave remote sensing, radar, snow. [Abstract] [bibtex-entry]


  11. H. C. Stankwitz and S. P. Taylor. Advances in non-linear apodization. IEEE Aerospace and Electronic Systems Magazine, 21(1):3-8, January 2006. Keyword(s): SAR Processing, Apodization, Spatially Variant Apodization, SVA, NonLinear Apodization, European Soil Moisture and Ocean Salinity system, GeoSTAR, Y-type synthetic aperture radiometers, antenna size, bandwidth extrapolation, impulse response performance, irregularly-shaped apertures, microwave radar systems, microwave remote sensing, nonlinear apodization, parse coherent apertures, sidelobe control, sparse aperture filling property, superresolution algorithms, superresolution techniques, synthetic aperture radar systems, synthetic multiple aperture radar technology, microwave measurement, radar antennas, radar resolution, remote sensing by radar, synthetic aperture radar. [Abstract] [bibtex-entry]


  12. G. Fornaro, E. Sansosti, R. Lanari, and M. Tesauro. Role of processing geometry in SAR raw data focusing. IEEE Transactions on Aerospace and Electronic Systems, 38(2):441-454, April 2002. Keyword(s): SAR Processing, 2D frequency SAR processing, SAR raw data focusing, airborne remote sensing, conical reference systems, geometric artifacts, high-resolution images, high-resolution microwave images, interferometric SAR, microwave remote sensing, phase aberrations, processing geometry role, received backscattered echoes, space-invariant component, space-variant component, spaceborne remote sensing, squinted geometries, squinted raw data acquisitions, stripmap mode, airborne radar, image registration, radar imaging, radar resolution, remote sensing by radar, sensor fusion, spaceborne radar, synthetic aperture radar. [Abstract] [bibtex-entry]


  13. Christian Matzler and A Standley. Technical note: Relief effects for passive microwave remote sensing. 2000. [bibtex-entry]


  14. V.I. Lytle and K.C. Jezek. Dielectric permittivity and scattering measurements of Greenland firn at 26.5-40 GHz. IEEE Transactions on Geoscience and Remote Sensing, 32(2):290-295, March 1994. Keyword(s): Radar, Radar Remote Sensing, Microwave Remote Sensing, Dielectric permittivity, scattering measurements, Greenland firn, firn, Greenland, 26.5-40 GHz, Ka-band, snow, remote sensing of snow. [Abstract] [bibtex-entry]


  15. Erwin Schanda, Christian Matzler, and Klaus Kunzi. Microwave remote sensing of snow cover. International Journal of Remote Sensing, 4(1):149-158, 1983. [bibtex-entry]


  16. Christian Matzler, Erwin Schanda, and Walter Good. Towards the definition of optimum sensor specifications for microwave remote sensing of snow. IEEE Transactions on Geoscience and Remote Sensing, (1):57-66, 1982. [bibtex-entry]


Conference articles

  1. Elias J. Deeb, Hans-Peter Marshall, Richard R. Forster, Cathleen E. Jones, Christopher A. Hiemstra, and Paul R. Siqueira. Supporting NASA SnowEx remote sensing strategies and requirements for L-band interferometric snow depth and snow water equivalent estimation. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 1395-1396, July 2017. [Abstract] [bibtex-entry]


  2. Andreas Wiesmann, Charles L. Werner, Tazio Strozzi, Christian Matzler, Thomas Nagler, Helmut Rott, Martin Schneebeli, and Urs Wegmuller. SnowScat, X- to Ku-Band Scatterometer Development. In Proc. ESA Living Planet Symposium, June 2010. Keyword(s): SnowScat, KuScat, backscatter, hydrological techniques, radiometry, remote sensing by radar, snow, spaceborne radar, C-band SAR satellite systems, ESA CoRe-H2O mission, Ku-band scatterometer, Swiss Alps, X-band scatterometer, backscatter information, backscattering signal, dry snow cover, dual frequency radar, frequency 18 GHz, frequency 9 GHz, mobile scatterometer, snow coverage, snow liquid water content, snow structure, spaceborne active microwave remote sensing, Backscatter, Frequency, Ground support, Radar measurements, Remote sensing, Satellites, Signal generators, Snow, Spaceborne radar, Water storage, Scatterometer, Snow, backscatter, snow grain. [Abstract] [bibtex-entry]


  3. Andreas Wiesmann, Charles L. Werner, Christian Matzler, Martin Schneebeli, Tazio Strozzi, and Urs Wegmuller. Mobile X- to Ku-band Scatterometer in Support of the CoRe-H2O Mission. In Proc. IEEE Int. Geosci. Remote Sens. Symp., volume 5, pages 244-247, July 2008. Keyword(s): SnowScat, KuScat, backscatter, hydrological techniques, radiometry, remote sensing by radar, snow, spaceborne radar, C-band SAR satellite systems, ESA CoRe-H2O mission, Ku-band scatterometer, Swiss Alps, X-band scatterometer, backscatter information, backscattering signal, dry snow cover, dual frequency radar, frequency 18 GHz, frequency 9 GHz, mobile scatterometer, snow coverage, snow liquid water content, snow structure, spaceborne active microwave remote sensing, Backscatter, Frequency, Ground support, Radar measurements, Remote sensing, Satellites, Signal generators, Snow, Spaceborne radar, Water storage, Scatterometer, Snow, backscatter, snow grain. [Abstract] [bibtex-entry]


  4. Andreas Wiesmann, Tazio Strozzi, Charles L. Werner, Urs Wegmuller, and Maurizio Santoro. Microwave remote sensing of alpine snow. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 1223-1227, July 2007. Keyword(s): SnowScat, KuScat, microwave measurement, remote sensing by radar, snow, ASSIST, Alpine Safety, Security and Information Services and Technologies, Alpine snow, C-band SAR, CoReH2O mission, SnowScat project, avalanche maps, avalanche warning, flood management, liquid water content, microwave remote sensing, snow coverage, snow structure, Content management, Ecosystems, Information security, Knowledge management, Microwave measurements, Remote sensing, Safety, Satellites, Snow, Space technology, ASSIST, CoReH20, SnowScat, avalanche, snow. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:24:02 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html