BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'subaperture'

Books and proceedings

  1. Annelie Wyholt. SAR Image Focus Errors due to Incorrect Geometrical Positioning in Fast Factorized Back-Projection. Licentiatavhandling, Chalmers University of Technology, 2008. Keyword(s): SAR Processing, Autofocus, Time-Domain Back-Projection, TDBP, FFBP, SAR image processing, antenna path parameters, autofocus, fast factorized back-projection, radar imaging, synthetic aperture radar. [Abstract] [bibtex-entry]


Thesis

  1. Josef Mittermayer. Hochauflösende Verarbeitung von Radardaten mit synthetischer Apertur. PhD thesis, Universität-Gesamthochschule Siegen, 2000. Keyword(s): SAR Processing, Frequency Scaling Algorithm, Comparison of Algorithms, Range-Doppler Algorithm, Wavenumber Domain Algorithm, omega-k, Range Migration Algorithm, Polar Format Algorithm, SPECAN, Convolution Back-projection, Spotlight SAR, Stripmap SAR, ScanSAR, ESAR, Airborne SAR, Spaceborne SAR. [Abstract] [bibtex-entry]


Articles in journal or book chapters

  1. Stephan Palm, Rainer Sommer, Daniel Janssen, Axel Tessmann, and Uwe Stilla. Airborne Circular W-Band SAR for Multiple Aspect Urban Site Monitoring. IEEE Transactions on Geoscience and Remote Sensing, 57(9):6996-7016, September 2019. [Abstract] [bibtex-entry]


  2. Jan Torgrimsson, Patrick Dammert, Hans Hellsten, and Lars M. H. Ulander. SAR Processing Without a Motion Measurement System. IEEE Transactions on Geoscience and Remote Sensing, 57(2):1025-1039, February 2019. Keyword(s): SAR Processsing, Backprojection, Fast-factorized Back-projection, FFBP, Time-Domain Back-Projection, TDBP, Azimuth Focusing, Motion Compensation, MoComp, autofocus, geometric autofocus, radar imaging, synthetic aperture radar, synthetic aperture radar image, very high frequency band, base-2 fast factorized back-projection, track velocity error, CARABAS II system, ultrawideband data sets, innovative autofocus concept, subaperture pair, free geometry parameters, back-projection formulation, factorized geometrical autofocus, SAR processing, FGA algorithm, VHF-band, wavelength-resolution SAR image, FGA images, linear equidistant track, basic geometry model, Geometry, Synthetic aperture radar, Global Positioning System, Tracking, Apertures, Radar tracking, Autofocus, back-projection (BP), factorized geometrical autofocus (FGA), Synthetic Aperture Radar (SAR). [Abstract] [bibtex-entry]


  3. Viet Thuy Vu and Mats I. Pettersson. Fast Backprojection Algorithms Based on Subapertures and Local Polar Coordinates for General Bistatic Airborne SAR Systems. IEEE Trans. Geosci. Remote Sens., 54(5):2706-2712, May 2016. Keyword(s): SAR Processing, Back-Projection, Fast Back-Projection, Fast-Factorized Back-Projection, Azimuth Focusing, airborne radar, synthetic aperture radar, bistatic CARABAS-like data, fast backprojection algorithms, general bistatic airborne SAR systems, half-power beamwidths, image quality measurements, interpolation step, local polar coordinates, peak sidelobe ratio, subapertures, Image reconstruction, Receivers, Signal processing algorithms, Synthetic aperture radar, Time-domain analysis, Transmitters, Algorithm, bistatic, fast backprojection, polar coordinates, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  4. Viet Thuy Vu and Mats I. Pettersson. Nyquist Sampling Requirements for Polar Grids in Bistatic Time-Domain Algorithms. IEEE Transactions on Signal Processing, 63(2):457-465, January 2015. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, Fast-Factorized Back-Projection, FFBP, Bistatic SAR, Bistatic Fast-Factorized Back-Projection, BiFFBP, radar signal processing, signal sampling, Nyquist sampling, airborne bistatic system, bistatic CARABAS-II like data, bistatic cases, bistatic time-domain algorithms, general bistatic geometry, polar grids, Geometry, Radar polarimetry, Receivers, Signal processing algorithms, Synthetic aperture radar, Time-domain analysis, Transmitters, Bistatic, Nyquist sampling, SAR, fast backprojection. [Abstract] [bibtex-entry]


  5. Keith Morrison and John Bennett. Tomographic Profiling - A Technique for Multi-Incidence-Angle Retrieval of the Vertical SAR Backscattering Profiles of Biogeophysical Targets. IEEE Trans. Geosci. Remote Sens., 52(2):1350-1355, February 2014. Keyword(s): SAR Processing, SAR tomography, tomography, snow, X-band, Ku-band, geophysical image processing, image retrieval, radar imaging, remote sensing by radar, synthetic aperture radar, tomography, across-track direction, airborne application, along-track direction, biogeophysical targets, forest canopies, ground-based SAR system, ice, multiincidence-angle retrieval, satellite application, snow, subaperture elements, synthetic aperture radar imaging, tomographic profiling, vegetation, vertical SAR backscattering profiles, Array signal processing, phased arrays, radar, radar imaging, synthetic aperture radar. [Abstract] [bibtex-entry]


  6. Lei Zhang, Hao-lin Li, Zhi-Jun Qiao, and Zhi-wei Xu. A Fast BP Algorithm With Wavenumber Spectrum Fusion for High-Resolution Spotlight SAR Imaging. IEEE Geosci. Remote Sens. Lett., 11(9):1460-1464, September 2014. Keyword(s): SAR Processing, Fast-Factorized Back-Projection, FFBP, Fast Backprojection, fast Fourier transforms, image fusion, image resolution, interpolation, radar imaging, synthetic aperture radar, transient response, AFBP algorithm, FFBP algorithm, SA fusion, UPC system, WN spectrum domain, accelerated fast backprojection algorithm, fast Fourier transform, fast factorization backprojection algorithm, high-resolution spotlight SAR imaging, image-domain interpolation, impulse response function, interpolation-based fusion, subaperture fusion, synthetic aperture radar, unified polar coordinate system, wavenumber spectrum fusion, Apertures, Azimuth, Image resolution, Imaging, Interpolation, Signal processing algorithms, Synthetic aperture radar, Accelerated fast BP (AFBP), fast backprojection (FBP), fast factorized backprojection (FFBP). [Abstract] [bibtex-entry]


  7. Viet Thuy Vu, Thomas K. Sjogren, and Mats I. Pettersson. Fast Time-Domain Algorithms for UWB Bistatic SAR Processing. IEEE Trans. Aerosp. Electron. Syst., 49(3):1982-1994, July 2013. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, Fast-Factorized Back-Projection, FFBP, Bistatic SAR, Bistatic Fast-Factorized Back-Projection, BiFFBP, radar cross-sections, radar imaging, synthetic aperture radar, time-domain analysis, ultra wideband radar, BiFFBP, CARABAS-II, UWB bistatic SAR, bistatic fast factorized backprojection, radar echo, radar signal processing, subaperture, subimage basis, synthetic aperture radar, time-domain algorithm, ultra wideband radar, ultra widebeam radar, Radar imaging, Receivers, Signal processing algorithms, Synthetic aperture radar, Time-domain analysis, Transmitters. [Abstract] [bibtex-entry]


  8. D. Zhu, R. Jiang, X. Mao, and Z. Zhu. Multi-Subaperture PGA for SAR Autofocusing. IEEE Transactions on Aerospace and Electronic Systems, 49(1):468-488, January 2013. Keyword(s): SAR Processing, Autofocus, synthetic aperture radar, SAR autofocusing, spotlight mode synthetic aperture radar, full-aperture phase gradient autofocus, PGA algorithm, high-order phase error, residual range cell migration, RCM, coherent processing interval, stripmap data, multisubaperture PGA algorithm, map drift technique, subaperture phase error, PGA-MD, Electronics packaging, Synthetic aperture radar, Azimuth, Image resolution, Accuracy, Polynomials, Estimation. [Abstract] [bibtex-entry]


  9. Yake Li, Chang Liu, Yanfei Wang, and Qi Wang. A Robust Motion Error Estimation Method Based on Raw Data. IEEE Trans. Geosci. Remote Sens., 50(7):2780-2790, 2012. Keyword(s): SAR Processing, Autofocus, SAR Autofocus, MoComp, Motion Compensation, curve fitting, geophysical image processing, least squares approximations, motion compensation, radar imaging, remote sensing by radar, synthetic aperture radar, RCMC, aircraft reference track deviations, curve fitting, double phase gradient estimation, filtering method, high order motion errors, high precision navigation system, high resolution airborne SAR systems, high resolution imagery, image processing, image quality, large swath mode, light aircraft SAR platform, motion compensation, motion error estimation method, range cell migration correction, range dependent phase errors, range resolution improvement, raw data, synthetic aperture radar, weighted total least square method, Aircraft, Azimuth, Electronics packaging, Error analysis, Estimation, Robustness, Trajectory, Autofocus, motion error estimation, phase gradient filtering, synthetic aperture radar (SAR), weighted total least square (WTLS) method. [Abstract] [bibtex-entry]


  10. L. Zhang, Z. Qiao, M. Xing, L. Yang, and Z. Bao. A Robust Motion Compensation Approach for UAV SAR Imagery. IEEE Trans. Geosci. Remote Sens., 50(8):3202-3218, August 2012. Keyword(s): autonomous aerial vehicles, geophysical image processing, geophysical techniques, maximum likelihood estimation, motion compensation, remote sensing by radar, synthetic aperture radar, robust motion compensation approach, UAV SAR imagery, unmanned aerial vehicle, synthetic aperture radar, remote sensing application, atmospheric turbulence, range invariant motion error, weighted phase gradient autofocus, nonsystematic range cell migration function, range dependent phase error, maximum likelihood WPGA algorithm, subaperture phase error, inertial navigation system, Electronics packaging, Estimation, Trajectory, Robustness, Navigation, Thyristors, Geometry, Local maximum-likelihood (LML), motion compensation (MOCO), phase gradient autofocus (PGA), synthetic aperture radar (SAR), unmanned aerial vehicle (UAV), weighted phase gradient autofocus (WPGA). [Abstract] [bibtex-entry]


  11. Hubert M.J. Cantalloube and Carole E. Nahum. Multiscale Local Map-Drift-Driven Multilateration SAR Autofocus Using Fast Polar Format Image Synthesis. IEEE Trans. Geosci. Remote Sens., 49(10):3730-3736, 2011. Keyword(s): SAR Processing, Autofocus, SAR Autofocus, MoComp, Motion Compensation, Map-Drift Autofocus, Multiscale Local Map-Drift, geophysical image processing, geophysical techniques, image registration, remote sensing by radar, synthetic aperture radar, SAR high-resolution imaging, autofocus method, bistatic errors, bistatic synthetic aperture radar autofocus, clock drift errors, coarse-to-fine resolution, fast polar format image synthesis, frequency-domain polar format algorithm, local images, multilateration, range-clipped Doppler low-filtered profiles, target points, Doppler effect, Equations, Image resolution, Optical transmitters, Receivers, Synthetic aperture radar, Trajectory, Airborne radar, bistatic synthetic aperture radar (SAR), focusing. [Abstract] [bibtex-entry]


  12. Geir Engen and Yngvar Larsen. Efficient Full Aperture Processing of TOPS Mode Data Using the Moving Band Chirp Z -Transform. IEEE Trans. Geosci. Remote Sens., 49(10):3688-3693, October 2011. Keyword(s): SAR Processing, TOPS, Terrain Observation by Progressive Scans, Z transforms, artificial satellites, satellite communication, European Space Agency, Sentinel-1 operational satellite, TOPS mode data, Terrain Observation by Progressive Scans, azimuth aperture, full aperture processing, imaging mode, moving band chirp Z-transform, signal transform, wavenumber domain processor, Antennas, Azimuth, Bandwidth, Chirp, Doppler effect, Focusing, Time frequency analysis, SAR processing, synthetic aperture radar (SAR), terrain observation by progressive scans (TOPS). [Abstract] [bibtex-entry]


  13. Marc Rodriguez-Cassola, Pau Prats, Gerhard Krieger, and Alberto Moreira. Efficient Time-Domain Image Formation with Precise Topography Accommodation for General Bistatic SAR Configurations. IEEE Transactions on Aerospace and Electronic Systems, 47(4):2949-2966, October 2011. Keyword(s): SAR Processing, Bistatic SAR, Time-Domain Back-Projection, TDBP, Fast-Factorized Back-Projection, FFBP, Fast Back-Projection, Back-Projection, Doppler information, German Aerospace Center, TerraSAR-X/F-SAR bistatic data, TerraSAR-X, F-SAR, nonstationary bistatic acquisitions, phase-preserving bistatic focusing, synchronization algorithm, airborne radar, backscatter, calibration, data acquisition, geophysical signal processing, radar signal processing, remote sensing by radar, spaceborne radar, synchronisation, synthetic aperture radar. [Abstract] [bibtex-entry]


  14. Guangcai Sun, Mengdao Xing, Yong Wang, Yufeng Wu, YiRong Wu, and Zheng Bao. Sliding Spotlight and TOPS SAR Data Processing Without Subaperture. IEEE Geosci. Remote Sens. Lett., 8(6):1036-1040, November 2011. Keyword(s): SAR Processing, TOPS, Terrain Observation by Progressive Scans, data acquisition, synthetic aperture radar, Doppler domain, TOPS SAR data processing, azimuth bandwidth, azimuth signal aliasing, data acquisition, imaging algorithm, instantaneous bandwidth, progressive scan, pulse repetition frequency, sliding spotlight, subaperture method, synthetic aperture radar, terrain observation, Azimuth, Bandwidth, Chirp, Focusing, Signal processing algorithms, Synthetic aperture radar, Sliding spotlight synthetic aperture radar (SAR), subaperture, terrain observation by progressive scan (TOPS) SAR. [Abstract] [bibtex-entry]


  15. Xiaoqing Wu, K.C. Jezek, E. Rodriguez, S. Gogineni, F. Rodriguez-Morales, and A. Freeman. Ice Sheet Bed Mapping With Airborne SAR Tomography. IEEE Trans. Geosci. Remote Sens., 49(10):3791 -3802, oct. 2011. Keyword(s): SAR Processing, SAR Tomography, Tomography, 2D image formation, 3D tomographic ice sounding method, AD 2006 05, AD 2008 07, airborne SAR tomography, ice sheet bed mapping, ice sheet surface topography, ice thickness, multiple-phase-center VHF radar system, nadir depth sounder tracks, swath measurements, time-domain subaperture method, very high frequency radar data, geophysical image processing, glaciology, hydrological techniques, radar imaging, remote sensing by radar, synthetic aperture radar;. [Abstract] [bibtex-entry]


  16. Wei Xu, Pingping Huang, Yunkai Deng, Jiantao Sun, and Xiuqin Shang. An Efficient Approach With Scaling Factors for TOPS-Mode SAR Data Focusing. IEEE Geosci. Remote Sens. Lett., 8(5):929-933, Sept 2011. Keyword(s): SAR Processing, TOPS, Terrain Observation by Progressive Scans, geophysical techniques, synthetic aperture radar, Doppler spectrum, ScanSAR, TOPS-mode SAR data focusing, TOPS-mode synthetic aperture radar data, Terrain Observation by Progressive Scans mode, azimuth baseband scaling operation, azimuth scaling factors, extended chirp scaling processing procedure, full-aperture imaging approach, limited azimuth-data extension, residual TOPS raw-data focusing, sliding spotlight SAR data focusing, spaceborne imaging mode, two-step focusing technique, wide-swath coverage, Azimuth, Bandwidth, Doppler effect, Focusing, Image resolution, Remote sensing, Aliasing, Terrain Observation by Progressive Scans (TOPS), deramp, extended chirp scaling, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  17. P. Samczynski and K.S. Kulpa. Coherent MapDrift Technique. IEEE Trans. Geosci. Remote Sens., 48(3):1505-1517, 2010. Keyword(s): SAR Processing, Autofocus, SAR Autofocus, MoComp, Motion Compensation, Map-Drift Autofocus, Coherent Map-Drift Autofocus, geophysical signal processing, radar signal processing, remote sensing by radar, synthetic aperture radar, target tracking, Earth imaging, MapDrift principles, coherent MapDrift technique, flight parameter estimation, moving target indication, parametric autofocus technique, real time processing, strip mode SAR systems, synthetic aperture radar, Autofocus, MD, coherent MapDrift (CMD), moving-target indication (MTI), multilook, subaperture, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  18. P. Prats, Karlus A. Câmara de Macedo, A. Reigber, R. Scheiber, and J. J. Mallorqui. Comparison of Topography- and Aperture-Dependent Motion Compensation Algorithms for Airborne SAR. IEEE Geosci. Remote Sens. Lett., 4(3):349-353, 2007. Keyword(s): SAR Processing, Motion Compensation, PTA-Algorithm, Precise Topography- and Aperture-Dependent (PTA) Algorithm, SATA, Subaperture Topography- and Aperture-dependent (SATA) Algorithm, Frequency Division (FD) Algorithm, Topography-Based Motion Compensation, ESAR, L-Band Calibration, image registration, interferometry, motion compensation (MoCo), synthetic aperture radar (SAR), Comparison, Comparsion of Motion Compensation Algorithms, InSAR, Airborne SAR. [Abstract] [bibtex-entry]


  19. Mats I. Pettersson. Detection of Moving Targets in Wideband SAR. IEEE Transactions on Aerospace and Electronic Systems, 40(3):780-796, July 2004. Keyword(s): SAR Processing, Fast Back-Projection, Factorized Back-Projection, Time-Domain Back-Projection, TDBP, Back-Projection, Moving Target Indication, Ultra-Wideband SAR, Wideband SAR, VHF SAR, UHF SAR, CARABAS, LORA, Airborne SAR, C-Band. [Abstract] [bibtex-entry]


  20. Josef Mittermayer, Alberto Moreira, and Otmar Loffeld. Spotlight SAR data processing using the frequency scaling algorithm. IEEE Trans. Geosci. Remote Sens., 37(5):2198-2214, September 1999. Keyword(s): SAR Processing, Spotlight SAR, dechirp, dechirp-on-receive, Doppler radar, geophysical signal processing, radar imaging, remote sensing by radar, spectral analysis, synthetic aperture radarazimuth processing, azimuth scaling, chirp convolution, frequency scaling algorithm, Chirp Scaling Algorithm, nonchirped SAR signals, nonchirped raw data, range Doppler domain, range cell migration correction, residual video phase, RVP, spectral analysis approach, spotlight SAR data processing, stripmap raw data, subaperture approach. [Abstract] [bibtex-entry]


  21. Alberto Moreira, Josef Mittermayer, and Rolf Scheiber. Extended Chirp Scaling Algorithm for Air- and Spaceborne SAR Data Processing in Stripmap and ScanSAR Imaging Modes. IEEE Transactions on Geoscience and Remote Sensing, 34(5):1123-1136, September 1996. Keyword(s): SAR Processing, Chirp Scaling Algorithm, Extended Chirp Scaling Algorithm, Spaceborne SAR, Airborne SAR, ScanSAR, Automatic Azimuth Coregistration, Azimuth Scaling, Squinted SAR, Interferometry, Phase-Preserving Processing, Range Scaling Formulation, Stripmap SAR, Subaperture Processing, Terrain Mapping. [Abstract] [bibtex-entry]


  22. T. M. Calloway and G. W. Donohoe. Subaperture autofocus for synthetic aperture radar. IEEE Transactions on Aerospace and Electronic Systems, 30(2):617-621, 1994. Keyword(s): SAR Processing, Autofocus. [Abstract] [bibtex-entry]


  23. Alberto Moreira and Yonghong Huang. Airborne SAR Processing of Highly Squinted Data Using a Chirp Scaling Approach with Integrated Motion Compensation. IEEE Transactions on Geoscience and Remote Sensing, 32(5):1029-1040, September 1994. Keyword(s): SAR Processing, Chirp Scaling Algorithm, Extended Chirp Scaling Algorithm, Motion Compensation, Motion Estimation, Squinted SAR, Cubic Phase Term, Airborne SAR, Automatic Azimuth Coregistration, Azimuth Scaling, Interferometry, Phase-Preserving Processing, Range Scaling Formulation, Stripmap SAR, Subaperture Processing, Terrain Mapping. [Abstract] [bibtex-entry]


  24. J.W. McCoy, N. Magotra, and B.K. Chang. Coherent Doppler tomography---a technique for narrow band SAR. IEEE Aerospace and Electronic Systems Magazine, 6(2):19-22, February 1991. Keyword(s): SAR Processing, SAR Tomography, Tomography, coherent Doppler tomography, coherent processing, computational overhead, high-resolution global mapping, imaging, multiple discrete frequencies, narrow band SAR, narrowband synthetic aperture radar, noncoherent subaperture processing, point spread function, radar platform, satellite geometry configuration, sidelobe level, simulation, single-frequency signal, spaceborne applications, Doppler effect, aerospace computing, aerospace instrumentation, computerised picture processing, digital simulation, radar theory;. [Abstract] [bibtex-entry]


Conference articles

  1. T. M. Marston, J. L. Kennedy, and P. L. Marston. Coherent and semi-coherent processing of limited-aperture circular synthetic aperture (CSAS) data. In Proc. OCEANS'11 MTS/IEEE KONA, pages 1-6, September 2011. Keyword(s): backscatter, radar imaging, synthetic aperture sonar, 360 degree scattering information, acoustic targets, backscattered echoes, circular synthetic aperture sonar, destructive interference, image clarity, image masking process, imaging algorithm, limited-aperture circular synthetic aperture data, remote environmental monitoring units, semi-coherent processing, sonar platform, time-domain information, unexploded ordnance objects, unmanned underwater vehicle, Acoustics, Aluminum, Apertures, Image reconstruction, Imaging, Synthetic aperture sonar, Tires, classification, semicoherent imaging, subaperture, unexploded ordinance. [bibtex-entry]


  2. Viet Thuy Vu, Thomas K. Sjogren, and Mats I. Pettersson. Fast backprojection algorithm for UWB bistatic SAR. In Proc. IEEE Radar Conf., pages 431-434, May 2011. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, Fast Factorized Back-Projection, FFBP, Back-Projection, UWB SAR, bistatic SAR, Motion Compensation, MoComp, UWB bistatic SAR, beamforming, bistatic fast backprojection algorithm, ground image plane, motion compensation, subaperture basis, subimage basis, time-domain characteristics, ultrawideband ultrawidebeam bistatic synthetic aperture radar, array signal processing, motion compensation, radar imaging, synthetic aperture radar, time-domain analysis, ultra wideband radar. [Abstract] [bibtex-entry]


  3. J. Sanz-Marcos, Jordi J. Mallorqui, A. Aguasca, and P. Prats. First ENVISAT and ERS-2 Parasitic Bistatic Fixed Receiver SAR Images Processed with the Subaperture Range-Doppler Algorithm. In Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006. IEEE International Conference on, pages 1840-1843, August 2006. [bibtex-entry]


  4. Charles V. Jakowatz, Daniel E. Wahl, David A. Yocky, Brian K. Bray, Wallace J. Bow, and John A. Richards. Comparison of algorithms for use in real-time spotlight-mode SAR image formation. In Edmund G. Zelnio and Frederick D. Garber, editors, , volume 5427, pages 108-116, 2004. SPIE. Keyword(s): SAR Processing, Real-Time, Real-Time Processing, Real-Time SAR, Video SAR, Polar Format Algorithm, PFA, Range Migration Algorithm, RMA, omega-k, Comparison of Algorithms, Comparison of Focusing Algorithms, overlapped subaperture algorithm, OSA, Spotlight SAR, Spotlight-mode data. [bibtex-entry]


  5. Joachim H. G. Ender. SAR/MTI with Multi-Subaperture Phased Arrays. In Proceedings of the Tyrrhenian International Workshop on Remote Sensing TIWRS, pages 313-331, September 2003. Keyword(s): SAR, Multi-Channel SAR, MTI, AER-II, PAMIR, Subaperture Processing, Phased Array Radar, SAR Processing, Multi-Channel SAR, MTI, AER-II, PAMIR, Subaperture Processing, Phased Array Radar, Tomography, SAR Tomography. [Abstract] [Comments] [bibtex-entry]


  6. Joachim H.G. Ender and Andreas R. Brenner. PAMIR - a wideband phased array SAR/MTI system. In IEE Proceedings - Radar, Sonar and Navigation, number 3, pages 165-172, June 2003. Keyword(s): SAR Processing, PAMIR, MTI, GMTI, Time-Domain Back-Projection, Back-Projection, Spotlight SAR, FGAN, X-Band, InSAR 1.8 GHz, ISAR, IfSAR, Phased Array Multifunctional Imaging Radar, X-band radar, airborne imaging radar, electronically steerable phased array, ground moving objects, ground moving target indication, ground-moving target indication, inverse SAR, long-range imaging capabilities, multichannel capability, operational modes, receive channels, reconfigurable phased array antenna, reconnaissance tasks, resolution, signal bandwidth, single-pass interferometric SAR, space-time adaptive processing, spaceborne imaging radar, subapertures, surveillance, synthetic aperture radar, wideband phased array SAR/MTI system, wideband system design. [Abstract] [bibtex-entry]


  7. Joachim H.G. Ender and Andreas R. Brenner. PAMIR - A Wideband Phased Array SAR/MTI System. In Proc. of EUSAR 2002 - 4th European Conference on Synthetic Aperture Radar, pages 157-162, 2002. Keyword(s): SAR Processing, PAMIR, MTI, GMTI, Time-Domain Back-Projection, Back-Projection, Spotlight SAR, FGAN, X-Band, InSAR 1.8 GHz, ISAR, IfSAR, Phased Array Multifunctional Imaging Radar, X-band radar, airborne imaging radar, electronically steerable phased array, ground moving objects, ground moving target indication, ground-moving target indication, inverse SAR, long-range imaging capabilities, multichannel capability, operational modes, receive channels, reconfigurable phased array antenna, reconnaissance tasks, resolution, signal bandwidth, single-pass interferometric SAR, space-time adaptive processing, spaceborne imaging radar, subapertures, surveillance, synthetic aperture radar, wideband phased array SAR/MTI system, wideband system design. [Abstract] [bibtex-entry]


  8. Roger R.-Y. Lee, James S. Verdi, and Mehrdad Soumekh. Enhancements of NP-3 UHF Image Quality Using Digital Spotlighting Technique. In Proceedings of the 2001 IEEE Radar Conference, pages 1-6, May 2001. Keyword(s): SAR Processing, Wavefront Reconstruction, Wavenumber Domain Algorithm, omega-k, RFI Suppression, Subaperture Processing, Digital Spotlighting, Slow-Time Upsampling, Alias-free Processing, Quadband SAR, P-Band, X-Band, L-Band, C-Band, Airborne SAR. [Abstract] [bibtex-entry]


  9. Mehrdad Soumekh, Gernot Gunther, Mark Linderman, and Ralph Kohler. Digitally-Spotlighted Subaperture SAR Image Formation Using High Performance Computing. In Edmund G. Zelnio, editor, Algorithms for Synthetic Aperture Radar Imagery VII, volume SPIE 4053, pages 260-271, 2000. Keyword(s): SAR Processing, Wavefront Reconstruction, Wavenumber Domain Algorithm, omega-k, RFI Suppression, Subaperture Processing, Parallel Processing, Digital Spotlighting, Slow-Time Upsampling, Alias-free Processing, Real-Time Processing, High Performance Computing, FFTW. [Abstract] [bibtex-entry]


  10. Olle Seger, Magnus Herberthson, and Hans Hellsten. Real time SAR processing of low frequency ultra wide band radar data. In Proc. of EUSAR '98 - European Conference on Synthetic Aperture Radar, pages 489-492, May 1998. Keyword(s): SAR Processing, Back-Projection, Time-Domain Back-Projection, TDBP, Local Back-Projection, Real Time Operation, Ultra-Wideband SAR, FOPEN, Image processing, Ground Penetrating Radar, Low-Frequency SAR, Image Reconstruction, Radar Resolution, Parallel Processing. [Abstract] [bibtex-entry]


  11. Alberto Moreira, Artur Brodscholl, Jacob Dom, Frank Kochsiek, and Winfried Poetzsch. Airborne Real-time SAR Processing Activities at DLR. In Geoscience and Remote Sensing Symposium, 1992. IGARSS '92. International, pages 412-414, 1992. Keyword(s): SAR Processing, Real-Time SAR Processing, Subaperture Processing, Real-Time Subaperture Processing, Hardware Processor, STC, Sensitivity Time Control. [bibtex-entry]


  12. Terry M. Calloway, Charles V. Jakowatz, Paul A. Thompson, and Paul H. Eichel. Comparison of synthetic-aperture radar autofocus techniques: phase gradient versus subaperture. In Franklin T. Luk, editor, , volume 1566, pages 353-364, 1991. SPIE. Keyword(s): SAR Processing, Autofocus, Comparison of Algorithms, Comparison of Autofocus Algorithms, Phase Gradient Algorithm, PGA, Subaperture-based Autofocus, subaperture correlation, look-misregistration autofocus, Map Drift. [bibtex-entry]


  13. Daniel E. Wahl, Charles V. Jakowatz, Dennis C. Ghiglia, and Paul H. Eichel. Relationships between autofocus methods for SAR and self-survey techniques for SONAR. In Andrew G. Tescher, editor, , volume 1567, pages 32-40, 1991. SPIE. Keyword(s): SAR Processing, Autofocus, Phase Gradient Algorithm, PGA, Subaperture-based Autofocus, subaperture correlation, look-misregistration autofocus, Map Drift, SONAR. [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:25:10 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html