BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'time-domain analysis'

Articles in journal or book chapters

  1. Ning Cao, Hyongki Lee, Evan Zaugg, Ramesh Shrestha, William E. Carter, Craig Glennie, Zhong Lu, and Hanwen Yu. Estimation of Residual Motion Errors in Airborne SAR Interferometry Based on Time-Domain Backprojection and Multisquint Techniques. IEEE Trans. Geosci. Remote Sens., 56(4):2397-2407, 2018. Keyword(s): SAR Processing, Interferometry, SAR Interferometry, InSAR, Differential SAR Interferometry, DInSAR, deformation monitoring, subsidence monitoring, Displacement, Focusing, Radar antennas, Synthetic aperture radar, Time-domain analysis, Trajectory, Backprojection (BP), SAR interferometry (InSAR), motion compensation (MoCo), residual motion error (RME), synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  2. S. A. V. Synnes, A. J. Hunter, Roy E. Hansen, T. O. Saebo, H. J. Callow, R. van Vossen, and A. Austeng. Wideband Synthetic Aperture Sonar Backprojection With Maximization of Wave Number Domain Support. IEEE Journal of Oceanic Engineering, 42(4):880-891, October 2017. Keyword(s): Synthetic Aperture Sonar, SAS, image filtering, image resolution, optimisation, sensor arrays, sonar imaging, synthetic aperture sonar, time-domain analysis, BP, SAS arrays, SAS image formation algorithms, TDBP access data, WD filtering, aspect-dependent scattering, data degradation, frequency-dependent scattering, generic SAS design, sensor data quality, spatial domain quality metrics, time domain backprojection access data, wave number domain counterpart, wave number domain support maximization, wideband SAS systems, wideband synthetic aperture sonar backprojection, widebeam synthetic aperture sonar backprojection, Image resolution, Imaging, Performance evaluation, Scattering, Sonar applications, Synthetic aperture sonar, Wideband, Along-track ambiguity, backprojection (BP) algorithm, grating lobes, synthetic aperture sonar (SAS), wideband sonar. [Abstract] [bibtex-entry]


  3. Xiaoshen Song and Weidong Yu. Processing video-SAR data with the fast backprojection method. IEEE Transactions on Aerospace and Electronic Systems, 52(6):2838-2848, December 2016. Keyword(s): SAR Processing, Back-Projection, Time-Domain Back-Projection, TDBP, Fast-Factorized Back-Projection, FFBP, radar imaging, synthetic aperture radar, FBP algorithm, GR, Gotcha data set, O(N2 log N) complexity reduction, ROI, X-band SAR measurement, fast backprojection method, general region, image sequence, land-imaging mode, recursive procedure, region of interest, synthetic aperture radar, video framing, video-SAR data processing, video-SAR image formation, Apertures, Azimuth, Complexity theory, Image resolution, Radar imaging, Synthetic aperture radar, Time-domain analysis. [Abstract] [bibtex-entry]


  4. Viet Thuy Vu and Mats I. Pettersson. Fast Backprojection Algorithms Based on Subapertures and Local Polar Coordinates for General Bistatic Airborne SAR Systems. IEEE Trans. Geosci. Remote Sens., 54(5):2706-2712, May 2016. Keyword(s): SAR Processing, Back-Projection, Fast Back-Projection, Fast-Factorized Back-Projection, Azimuth Focusing, airborne radar, synthetic aperture radar, bistatic CARABAS-like data, fast backprojection algorithms, general bistatic airborne SAR systems, half-power beamwidths, image quality measurements, interpolation step, local polar coordinates, peak sidelobe ratio, subapertures, Image reconstruction, Receivers, Signal processing algorithms, Synthetic aperture radar, Time-domain analysis, Transmitters, Algorithm, bistatic, fast backprojection, polar coordinates, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  5. Viet Thuy Vu and Mats I. Pettersson. Nyquist Sampling Requirements for Polar Grids in Bistatic Time-Domain Algorithms. IEEE Transactions on Signal Processing, 63(2):457-465, January 2015. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, Fast-Factorized Back-Projection, FFBP, Bistatic SAR, Bistatic Fast-Factorized Back-Projection, BiFFBP, radar signal processing, signal sampling, Nyquist sampling, airborne bistatic system, bistatic CARABAS-II like data, bistatic cases, bistatic time-domain algorithms, general bistatic geometry, polar grids, Geometry, Radar polarimetry, Receivers, Signal processing algorithms, Synthetic aperture radar, Time-domain analysis, Transmitters, Bistatic, Nyquist sampling, SAR, fast backprojection. [Abstract] [bibtex-entry]


  6. Craig Stringham and David G. Long. GPU Processing for UAS-Based LFM-CW Stripmap SAR. Photogrammetric Engineering & Remote Sensing, 80(12):1107-1115, 2014. Keyword(s): SAR Processing, Azimuth Focusing, Time-domain back-projection, TDBP, SAR focusing, GPU, GPU-based parallelized TDBP, graphics processing units, motion compensation, parallel processing, radar signal processing, synthetic aperture radar, 3D motion compensation, GPU based backprojection processing, NVIDIA CUDA GPU computing framework, SAR processing scheme, agile SAR platforms, parallelized backprojection processing, time domain backprojection processing, Azimuth, Focusing, Graphics processing units, Remote sensing, Synthetic aperture radar, Time-domain analysis, Azimuth focusing, CARSAR, CUDA, GPU, Parallelization, SAR imaging. [Abstract] [bibtex-entry]


  7. Viet Thuy Vu, Thomas K. Sjogren, and Mats I. Pettersson. Fast Time-Domain Algorithms for UWB Bistatic SAR Processing. IEEE Trans. Aerosp. Electron. Syst., 49(3):1982-1994, July 2013. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, Fast-Factorized Back-Projection, FFBP, Bistatic SAR, Bistatic Fast-Factorized Back-Projection, BiFFBP, radar cross-sections, radar imaging, synthetic aperture radar, time-domain analysis, ultra wideband radar, BiFFBP, CARABAS-II, UWB bistatic SAR, bistatic fast factorized backprojection, radar echo, radar signal processing, subaperture, subimage basis, synthetic aperture radar, time-domain algorithm, ultra wideband radar, ultra widebeam radar, Radar imaging, Receivers, Signal processing algorithms, Synthetic aperture radar, Time-domain analysis, Transmitters. [Abstract] [bibtex-entry]


  8. T.K. Sjogren, V.T. Vu, and M.I. Pettersson. A comparative study of the polar version with the subimage version of Fast Factorized Backprojection in UWB SAR. International Radar Symposium, pp 1-4, May 2008. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, Fast Back-Projection, Back-Projection, Fast Factorized Back-Projection, Comparison of Algorithms, interpolation, radar imaging, synthetic aperture radar, time-domain analysis, ultra wideband radar, UWB SAR, interpolation method, phase error, polar version, subimage version, time domain SAR algorithm, Factorized Back-Projection. [Abstract] [bibtex-entry]


  9. F. Gustrau and A. Bahr. W-band investigation of material parameters, SAR distribution, and thermal response in human tissue. IEEE Transactions on Microwave Theory and Techniques, 50(10):2393-2400, October 2002. Keyword(s): SAR Processing, W-Band, bioelectric phenomena, biological effects of microwaves, biological tissues, biothermics, dosimetry, eye, finite difference time-domain analysis, health hazards, infrared imaging, skin, 3 to 100 GHz, 77 GHz, Gunn oscillator, SAR distribution, W-band dielectric properties, analytical method, dosimetry, electromagnetic field, eye tissue, finite-difference time-domain method, horn antenna, human eye, human tissue, layered skin model, maximum local SAR values, maximum temperature increase, millimeter-wave irradiation, plane-wave exposure, porcine eye, safety guidelines, skin, specific absorption rate, superficial tissue, temperature changes, thermal bio-heat-transfer simulation, thermal infrared imaging system, thermal response, Antenna measurements, Biological materials, Biological system modeling, Biological tissues, Dielectric materials, Electromagnetic fields, Humans, Millimeter wave measurements, Skin, Temperature. [Abstract] [bibtex-entry]


  10. R. Lanari, S. Hensley, and P.A. Rosen. Chirp z-transform based SPECAN approach for phase-preserving ScanSAR image generation. Radar, Sonar and Navigation, IEE Proceedings -, 145(5):254-261, October 1998. Keyword(s): SAR Processing, Modified SPECAN, SPECAN, Spectral Analysis, Z transforms, airborne radar, image resolution, radar imaging, radar resolution, InSAR, SAR Interferometry, radiowave interferometry, spaceborne radar, synthetic aperture radar, time-domain analysis, transient response, ScanSAR, airborne platform, algorithm, azimuth focusing, chirp z-transform, chirp-z, experiments, high resolution microwave images, image impulse response, interferometric ScanSAR systems, modified SPECAN algorithm, phase analysis, phase-preserving ScanSAR image generation, real data, scan mode synthetic aperture radar, simulated data, spaceborne platform, standard range-Doppler approach, time domain. [Abstract] [bibtex-entry]


  11. G. Fornaro, G. Franceschetti, R. Lanari, D. Rossi, and M. Tesauro. Interferometric SAR phase unwrapping using the finite element method. IEE Proceedings - Radar, Sonar and Navigation, 144(5):266-274, October 1997. Keyword(s): IFSAR images, computations speedup, efficiency, experiments, finite element method, interferometric SAR phase unwrapping, least-squares solution, multigrid technique, noise robust method, phase unwrapping, precision, real ERS-I data, simulated patterns, time domain, two-dimensional algorithm, weighting functions, finite element analysis, least squares approximations, radar imaging, radiowave interferometry, synthetic aperture radar, time-domain analysis. [Abstract] [bibtex-entry]


Conference articles

  1. M. Faisal, M. A. H. Chowdhury, M. A. I. Bhuyan, N. H. M. Bhuyan, and A. Matin. Development of a polarimetric interferometric GB-SAR and perform measurement for a fixed target. In Proc. Computer and Communication Engineering (ECCE) 2017 Int. Conf. Electrical, pages 285-289, February 2017. Keyword(s): GB-SAR, ground-based SAR, terrestrial SAR, horn antennas, radar antennas, radar interferometry, radar target recognition, synthetic aperture radar, SAR system, antenna positioner, building vehicles, data compression, double ridge guide horn antenna, fixed target, ground vehicles, ground-based synthetic aperture radar system, innovative monitoring technique, perform measurement, polarimetric & interferometric GB-SAR, vector network analyzer, Antenna measurements, Apertures, Frequency-domain analysis, Image reconstruction, Monitoring, Synthetic aperture radar, Time-domain analysis, Global Backprojection (GBP), Ground-Based SAR (GB-SAR), Interferometry, Low loss-high frequency cable, Vector Network Analyzer (VNA). [bibtex-entry]


  2. Othmar Frey, Charles L. Werner, and Urs Wegmuller. GPU-based parallelized time-domain back-projection processing for agile SAR platforms. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 1132-1135, July 2014. Keyword(s): SAR Processing, Azimuth Focusing, Time-Domain Back-Projection, TDBP, SAR focusing, GPU, GPU-based parallelized TDBP, graphics processing units, motion compensation, parallel processing, radar signal processing, synthetic aperture radar, 3D motion compensation, GPU based backprojection processing, NVIDIA CUDA GPU computing framework, SAR processing scheme, agile SAR platforms, car borne SAR data set, nonlinear sensor trajectories, parallelized backprojection processing, single look complex SAR images, slant azimuth geometry, slant range geometry, synthetic aperture, time domain backprojection processing, Azimuth, Focusing, Graphics processing units, Remote sensing, Synthetic aperture radar, Time-domain analysis, Azimuth focusing, CARSAR, CUDA, GPU, Nonlinear Sensor Trajectory, Parallelization, SAR imaging, SAR interferometry, Synthetic aperture radar (SAR), car-borne SAR, ground-based SAR system. [Abstract] [bibtex-entry]


  3. Viet Thuy Vu, Thomas K. Sjogren, and Mats I. Pettersson. Fast backprojection algorithm for UWB bistatic SAR. In Proc. IEEE Radar Conf., pages 431-434, May 2011. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, Fast Factorized Back-Projection, FFBP, Back-Projection, UWB SAR, bistatic SAR, Motion Compensation, MoComp, UWB bistatic SAR, beamforming, bistatic fast backprojection algorithm, ground image plane, motion compensation, subaperture basis, subimage basis, time-domain characteristics, ultrawideband ultrawidebeam bistatic synthetic aperture radar, array signal processing, motion compensation, radar imaging, synthetic aperture radar, time-domain analysis, ultra wideband radar. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:25:22 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html