BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'Factorized Back-Projection'

Books and proceedings

  1. Annelie Wyholt. SAR Image Focus Errors due to Incorrect Geometrical Positioning in Fast Factorized Back-Projection. Licentiatavhandling, Chalmers University of Technology, 2008. Keyword(s): SAR Processing, Autofocus, Time-Domain Back-Projection, TDBP, FFBP, SAR image processing, antenna path parameters, autofocus, fast factorized back-projection, radar imaging, synthetic aperture radar. [Abstract] [bibtex-entry]


Thesis

  1. Craig L. Stringham. Developments in LFM-CW SAR for UAV Operation. PhD thesis, 2014. Keyword(s): SAR Proceessing, radar, SAR, UAV, GPU, Autofocus, SAR Autofocus, Backprojection, Time-Domain Back-Projection, Back-Projection, TDBP, fast-factorized back-projection, FFBP, LFM-CW, FMCW, MoComp, Motion Compensation, CSA, ECS, Chirp Scaling, Extended Chirp Scaling, FSA, Frequency Scaling Algorithm, Range-Doppler Algorithm, RDA, synthetic aperture radar, Brigham Young University, muSAR system, LFM-CW signal model, SAR image quality, aircraft, atmospheric turbulence, high-resolution synthetic aperture radar systems, linear frequency-modulated continuous-wave signal, motion compensation, motion correction algorithms, unmanned aerial vehicle, Airborne SAR, geophysical techniques. [Abstract] [bibtex-entry]


Articles in journal or book chapters

  1. Jan Torgrimsson, Patrick Dammert, Hans Hellsten, and Lars M. H. Ulander. SAR Processing Without a Motion Measurement System. IEEE Transactions on Geoscience and Remote Sensing, 57(2):1025-1039, February 2019. Keyword(s): SAR Processsing, Backprojection, Fast-factorized Back-projection, FFBP, Time-Domain Back-Projection, TDBP, Azimuth Focusing, Motion Compensation, MoComp, autofocus, geometric autofocus, radar imaging, synthetic aperture radar, synthetic aperture radar image, very high frequency band, base-2 fast factorized back-projection, track velocity error, CARABAS II system, ultrawideband data sets, innovative autofocus concept, subaperture pair, free geometry parameters, back-projection formulation, factorized geometrical autofocus, SAR processing, FGA algorithm, VHF-band, wavelength-resolution SAR image, FGA images, linear equidistant track, basic geometry model, Geometry, Synthetic aperture radar, Global Positioning System, Tracking, Apertures, Radar tracking, Autofocus, back-projection (BP), factorized geometrical autofocus (FGA), Synthetic Aperture Radar (SAR). [Abstract] [bibtex-entry]


  2. Stephan Palm, Rainer Sommer, and Uwe Stilla. Mobile Radar Mapping --- Subcentimeter SAR Imaging of Roads. IEEE Transactions on Geoscience and Remote Sensing, 56(11):6734-6746, November 2018. Keyword(s): SAR Processing, Azimuth Focusing, FMCW, Back Projection, Time-Domain Back-Projection, TDBP, FFBP, Fast-Factorized Back-Projection, CW radar, digital elevation models, FM radar, geophysical image processing, Global Positioning System, image reconstruction, image resolution, radar imaging, remote sensing by radar, synthetic aperture radar, mobile radar mapping-subcentimeter SAR imaging, ultrahigh-resolution synthetic aperture radar data, related theoretical background, imaging method, backprojection techniques, potential errors, correct geometry, imaging quality, point target simulations, suitable digital elevation model, illuminated scene, conventional roads, mobile mapping scenarios, SAR images, output data, reference targets, GPS-INS data, conventional 3-D Point Cloud Software, geometric distortions, subcentimeter SAR imaging, active frequency-modulated continuous wave radar system, frequency 300.0 GHz, Synthetic aperture radar, Sensors, Radar imaging, Roads, Laser radar, Geometry, Millimeter wave radar, radar resolution, radar signal processing, road vehicle radar. [Abstract] [bibtex-entry]


  3. S. Zhou, L. Yang, L. Zhao, and G. Bi. Quasi-Polar-Based FFBP Algorithm for Miniature UAV SAR Imaging Without Navigational Data. IEEE Transactions on Geoscience and Remote Sensing, 55(12):7053-7065, December 2017. Keyword(s): autonomous aerial vehicles, image resolution, radar imaging, radar resolution, synthetic aperture radar, polar coordinate system, phase autofocusing, trajectory deviations, quasipolar grid image, data-driven motion compensation, back-projection algorithm, unmanned aerial vehicle synthetic aperture radar applications, time-domain algorithms, trajectory designation, flexible geometric configuration, navigational data, miniature UAV SAR imaging, FFBP algorithm, miniature UAV-SAR test bed, raw data experiments, high-resolution SAR applications, image focusing quality, analytical image spectrum, phase errors, quasipolar coordinate system, Synthetic aperture radar, Trajectory, Unmanned aerial vehicles, Signal processing algorithms, Algorithm design and analysis, Fast factorized back-projection (FFBP), motion compensation (MOCO), quasi-polar coordinate system, synthetic aperture radar (SAR), unmanned aerial vehicle (UAV). [Abstract] [bibtex-entry]


  4. Octavio Ponce, Pau Prats-Iraola, Rolf Scheiber, Andreas Reigber, and Alberto Moreira. First Airborne Demonstration of Holographic SAR Tomography With Fully Polarimetric Multicircular Acquisitions at L-Band. IEEE_J_GRS, 54(10):6170-6196, October 2016. Keyword(s): geophysical techniques, radar imaging, remote sensing by radar, synthetic aperture radar, 2-D synthetic aperture, Fully Polarimetric Multicircular Acquisitions, German Aerospace Center, Germany, HoloSAR tomogram polarimetric analysis, Kaufbeuren, L-Band, SAR systems, airborne F-SAR sensor, coherent imaging approach, complex reflectivity, compressive sensing, fast-factorized back-projection, forest backscattering analysis, full 3-D reconstructions, generalized likelihood ratio test, geometric acquisition, geoscience community, holographic SAR tomography, holographic techniques, impulse response function, incoherent imaging, individual circular trajectories, internal structure imaging, multicircular SAR acquisitions, polarimetric L-band HoloSAR survey, radar resolution capability function, scatterer polarimetric signature, semitransparent media, sidelobe power, spatial resolution, target 3-D IRF, tomographic techniques, volumetric backscattering, Apertures, Radar imaging, Spatial resolution, Synthetic aperture radar, Tomography, Circular synthetic aperture radar (CSAR), compressive sensing (CS), fast-factorized back-projection (FFBP), holographic sar tomography (HoloSAR), phase gradient autofocus (PGA), polarimetric synthetic aperture radar (PolSAR). [bibtex-entry]


  5. Xiaoshen Song and Weidong Yu. Processing video-SAR data with the fast backprojection method. IEEE Transactions on Aerospace and Electronic Systems, 52(6):2838-2848, December 2016. Keyword(s): SAR Processing, Back-Projection, Time-Domain Back-Projection, TDBP, Fast-Factorized Back-Projection, FFBP, radar imaging, synthetic aperture radar, FBP algorithm, GR, Gotcha data set, O(N2 log N) complexity reduction, ROI, X-band SAR measurement, fast backprojection method, general region, image sequence, land-imaging mode, recursive procedure, region of interest, synthetic aperture radar, video framing, video-SAR data processing, video-SAR image formation, Apertures, Azimuth, Complexity theory, Image resolution, Radar imaging, Synthetic aperture radar, Time-domain analysis. [Abstract] [bibtex-entry]


  6. Jan Torgrimsson, Patrik Dammert, Hans Hellsten, and Lars M. H. Ulander. An Efficient Solution to the Factorized Geometrical Autofocus Problem. IEEE Transactions on Geoscience and Remote Sensing, 54(8):4732-4748, August 2016. Keyword(s): SAR Processing, Autofocus, Fast-Factorized Back-Projection, FFBP, radar imaging, synthetic aperture radar, 6-D autofocus problem, FGA algorithm, adjustable geometry parameters, factorized back-projection formulation, factorized geometrical autofocus problem, geometrical variation, global autofocus solution, magnitude values, maximizing focus quality, peak-to-sidelobe ratio, point-like targets, synthetic-aperture-radar processing, ultrawideband CARABAS II data, Apertures, Geometry, Radar imaging, Radar tracking, Search problems, Synthetic aperture radar, Autofocus, back-projection, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  7. Viet Thuy Vu and Mats I. Pettersson. Fast Backprojection Algorithms Based on Subapertures and Local Polar Coordinates for General Bistatic Airborne SAR Systems. IEEE Trans. Geosci. Remote Sens., 54(5):2706-2712, May 2016. Keyword(s): SAR Processing, Back-Projection, Fast Back-Projection, Fast-Factorized Back-Projection, Azimuth Focusing, airborne radar, synthetic aperture radar, bistatic CARABAS-like data, fast backprojection algorithms, general bistatic airborne SAR systems, half-power beamwidths, image quality measurements, interpolation step, local polar coordinates, peak sidelobe ratio, subapertures, Image reconstruction, Receivers, Signal processing algorithms, Synthetic aperture radar, Time-domain analysis, Transmitters, Algorithm, bistatic, fast backprojection, polar coordinates, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  8. Viet Thuy Vu and Mats I. Pettersson. Nyquist Sampling Requirements for Polar Grids in Bistatic Time-Domain Algorithms. IEEE Transactions on Signal Processing, 63(2):457-465, January 2015. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, Fast-Factorized Back-Projection, FFBP, Bistatic SAR, Bistatic Fast-Factorized Back-Projection, BiFFBP, radar signal processing, signal sampling, Nyquist sampling, airborne bistatic system, bistatic CARABAS-II like data, bistatic cases, bistatic time-domain algorithms, general bistatic geometry, polar grids, Geometry, Radar polarimetry, Receivers, Signal processing algorithms, Synthetic aperture radar, Time-domain analysis, Transmitters, Bistatic, Nyquist sampling, SAR, fast backprojection. [Abstract] [bibtex-entry]


  9. Evan C. Zaugg and David G. Long. Generalized Frequency Scaling and Backprojection for LFM-CW SAR Processing. IEEE Trans. Geosci. Remote Sens., 53(7):3600-3614, July 2015. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, Back-Projection, Fast-Factorized Back-Projection, FFBP, GPU, SAR focusing, Azimuth Focusing, GPU-based parallelized TDBP, graphics processing units, LFM-CW, FMCW, Airborne SAR, Approximation algorithms, Approximation methods, Bandwidth, Chirp, Doppler effect, Synthetic aperture radar, Radar imaging, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  10. Octavio Ponce, Pau Prats-Iraola, Muriel Pinheiro, Marc Rodriguez-Cassola, Rolf Scheiber, Andreas Reigber, and Alberto Moreira. Fully Polarimetric High-Resolution 3-D Imaging With Circular SAR at L-Band. IEEE Trans. Geosci. Remote Sens., 52(6):3074-3090, June 2014. Keyword(s): SAR Processing, Circular SAR, Time-Domain Back-Projection, TDBP, MoComp, Motion Compensation, Bandwidth, Image resolution, Imaging, L-band, Synthetic aperture radar, Trajectory, Autofocus, circular synthetic aperture radar (CSAR), fast factorized back-projection, FFBP, graphics processing unit (GPU), high-resolution SAR, polarimetry, synthetic aperture radar (SAR), tomography, SAR Tomography. [Abstract] [bibtex-entry]


  11. Jan Torgrimsson, Patrik Dammert, Hans Hellsten, and Lars M. H. Ulander. Factorized Geometrical Autofocus for Synthetic Aperture Radar Processing. IEEE Trans. Geosci. Remote Sens., 52(10):6674-6687, October 2014. Keyword(s): SAR Processing, Fast-Factorized Back-Projection, FFBP, Time-Domain Back-Projection, TDBP, Airborne SAR, CARABAS Autofocus, SAR Autofocus, Geometrical Autofocus, radar imaging, radar tracking, synthetic aperture radar, ultra wideband radar, FGA algorithm, coherent all radio band system II data set, constrained problem, factorized geometrical autofocus algorithm, fast factorized back-projection chain, gain 3 dB, intensity correlation, object function, peak-to-sidelobe ratio measurement, radar imaging, residual space variant range cell migration, ultrawideband synthetic aperture radar processing, Apertures, Electronics packaging, Geometry, Radar tracking, Synthetic aperture radar, Transforms, Autofocus, back-projection, phase gradient algorithm (PGA), synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  12. Viet Thuy Vu, Thomas K. Sjogren, and Mats I. Pettersson. Two-Dimensional Spectrum for BiSAR Derivation Based on Lagrange Inversion Theorem. IEEE Geosci. Remote Sens. Lett., 11(7):1210-1214, July 2014. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, Fast-Factorized Back-Projection, FFBP, Bistatic SAR, Bistatic Fast-Factorized Back-Projection, BiFFBP, Fourier transforms, inverse problems, synthetic aperture radar, BiSAR derivation, Fourier transform, Lagrange inversion theorem, bistatic synthetic aperture radar, stationary phase, two-dimensional spectrum, Apertures, Azimuth, Focusing, Frequency-domain analysis, Remote sensing, Synthetic aperture radar, Transmitters, Bistatic synthetic aperture radar (BiSAR), LORA, Lagrange inversion theorem, two-dimensional spectrum. [Abstract] [bibtex-entry]


  13. Lei Zhang, Hao-lin Li, Zhi-Jun Qiao, and Zhi-wei Xu. A Fast BP Algorithm With Wavenumber Spectrum Fusion for High-Resolution Spotlight SAR Imaging. IEEE Geosci. Remote Sens. Lett., 11(9):1460-1464, September 2014. Keyword(s): SAR Processing, Fast-Factorized Back-Projection, FFBP, Fast Backprojection, fast Fourier transforms, image fusion, image resolution, interpolation, radar imaging, synthetic aperture radar, transient response, AFBP algorithm, FFBP algorithm, SA fusion, UPC system, WN spectrum domain, accelerated fast backprojection algorithm, fast Fourier transform, fast factorization backprojection algorithm, high-resolution spotlight SAR imaging, image-domain interpolation, impulse response function, interpolation-based fusion, subaperture fusion, synthetic aperture radar, unified polar coordinate system, wavenumber spectrum fusion, Apertures, Azimuth, Image resolution, Imaging, Interpolation, Signal processing algorithms, Synthetic aperture radar, Accelerated fast BP (AFBP), fast backprojection (FBP), fast factorized backprojection (FFBP). [Abstract] [bibtex-entry]


  14. Kyra Moon and David G. Long. A New Factorized Backprojection Algorithm for Stripmap Synthetic Aperture Radar. Positioning, 4:42-56, 2013. Keyword(s): SAR Processing, Azimuth Focusing, Time-domain back-projection, TDBP, SAR focusing, motion compensation, radar signal processing, synthetic aperture radar, 3D motion compensation, SAR processing scheme, agile SAR platforms, time domain backprojection processing, Fast-Factorized Back-Projection, FFBP, Fast Back-Projection, Synthetic aperture radar. [Abstract] [bibtex-entry]


  15. Viet Thuy Vu, Thomas K. Sjogren, and Mats I. Pettersson. Fast Time-Domain Algorithms for UWB Bistatic SAR Processing. IEEE Trans. Aerosp. Electron. Syst., 49(3):1982-1994, July 2013. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, Fast-Factorized Back-Projection, FFBP, Bistatic SAR, Bistatic Fast-Factorized Back-Projection, BiFFBP, radar cross-sections, radar imaging, synthetic aperture radar, time-domain analysis, ultra wideband radar, BiFFBP, CARABAS-II, UWB bistatic SAR, bistatic fast factorized backprojection, radar echo, radar signal processing, subaperture, subimage basis, synthetic aperture radar, time-domain algorithm, ultra wideband radar, ultra widebeam radar, Radar imaging, Receivers, Signal processing algorithms, Synthetic aperture radar, Time-domain analysis, Transmitters. [Abstract] [bibtex-entry]


  16. Viet Thuy Vu, Thomas K. Sjogren, and Pettersson. Phase Error Calculation for Fast Time-Domain Bistatic SAR Algorithms. IEEE Trans. Aerosp. Electron. Syst., 49(1):631-639, January 2013. Keyword(s): SAR Processing, Time-Domain Back-Projection, Back-Projection, TDBP, SAR image processing, Fast Factorized Back-Projection, FFBP, Bistatic SAR, Phase Error, Bistatic Fast Factorized Back-Projection, Motion Compensation, MoComp, Airborne SAR radar imaging, synthetic aperture radar, BiFFBP, SAR image quality, bistatic fast factorized backprojection, monostatic SAR, phase error calculation, synthetic aperture radar, time domain bistatic SAR, Apertures, Radar tracking, Receivers, Synthetic aperture radar, Target tracking, Transmitters CARABAS, LORA. [Abstract] [bibtex-entry]


  17. Lei Zhang, Hao-lin Li, Zhi-Jun Qiao, Meng-Dao Xing, and Zheng Bao. Integrating Autofocus Techniques With Fast Factorized Back-Projection for High-Resolution Spotlight SAR Imaging. IEEE Geosci. Remote Sens. Lett., 10(6):1394-1398, November 2013. Keyword(s): SAR Processing, Fast-Factorized Back-Projection, FFBP, Time-Domain Back-Projection, TDBP, Fourier transforms, geophysical techniques, remote sensing by radar, synthetic aperture radar, BP coordinate, BP imagery, FFBP SA images, FFBP recursion, FFBP sub-aperture images, Fourier transform, MAMD algorithm, MAMD recursion, conventional autofocus techniques integration, fast factorized back-projection, high efficiency FFBP, high precision FFBP, high-resolution SAR imaging, high-resolution spotlight SAR imaging, high-resolution synthetic aperture radar imaging, novel multiple aperture map drift algorithm, phase correction, phase error function, range-compressed phase history data, raw data, real data experiments, well-focused imagery, Apertures, Azimuth, Doppler effect, Fourier transforms, History, Signal processing algorithms, Synthetic aperture radar, Autofocus, back-projection (BP), fast factorized back-projection (FFBP), multiple aperture map drift (MAMD), synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  18. Marc Rodriguez-Cassola, Pau Prats, Gerhard Krieger, and Alberto Moreira. Efficient Time-Domain Image Formation with Precise Topography Accommodation for General Bistatic SAR Configurations. IEEE Transactions on Aerospace and Electronic Systems, 47(4):2949-2966, October 2011. Keyword(s): SAR Processing, Bistatic SAR, Time-Domain Back-Projection, TDBP, Fast-Factorized Back-Projection, FFBP, Fast Back-Projection, Back-Projection, Doppler information, German Aerospace Center, TerraSAR-X/F-SAR bistatic data, TerraSAR-X, F-SAR, nonstationary bistatic acquisitions, phase-preserving bistatic focusing, synchronization algorithm, airborne radar, backscatter, calibration, data acquisition, geophysical signal processing, radar signal processing, remote sensing by radar, spaceborne radar, synchronisation, synthetic aperture radar. [Abstract] [bibtex-entry]


  19. T.K. Sjogren, V.T. Vu, and M.I. Pettersson. A comparative study of the polar version with the subimage version of Fast Factorized Backprojection in UWB SAR. International Radar Symposium, pp 1-4, May 2008. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, Fast Back-Projection, Back-Projection, Fast Factorized Back-Projection, Comparison of Algorithms, interpolation, radar imaging, synthetic aperture radar, time-domain analysis, ultra wideband radar, UWB SAR, interpolation method, phase error, polar version, subimage version, time domain SAR algorithm, Factorized Back-Projection. [Abstract] [bibtex-entry]


  20. Mats I. Pettersson. Detection of Moving Targets in Wideband SAR. IEEE Transactions on Aerospace and Electronic Systems, 40(3):780-796, July 2004. Keyword(s): SAR Processing, Fast Back-Projection, Factorized Back-Projection, Time-Domain Back-Projection, TDBP, Back-Projection, Moving Target Indication, Ultra-Wideband SAR, Wideband SAR, VHF SAR, UHF SAR, CARABAS, LORA, Airborne SAR, C-Band. [Abstract] [bibtex-entry]


  21. Lars M. H. Ulander, Hans Hellsten, and Gunnar Stenström. Synthetic-Aperture Radar Processing Using Fast Factorized Back-Projection. IEEE Transactions on Aerospace and Electronic Systems, 39(3):760-776, July 2003. Keyword(s): SAR Processing, Fast Factorized Back-Projection, Time-Domain Back-Projection, TDBP, Back-Projection, Fast Back-Projection, Factorized Back-Projection, Ultra-Wideband SAR, VHF SAR, CARABAS, Airborne SAR. [Abstract] [bibtex-entry]


Conference articles

  1. O. Ponce, H. Joerg, R. Scheiber, P. Prats, I. Hajnsek, and A. Reigber. First study on holographic SAR tomography over agricultural crops at C-/X-band. In Proc. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), pages 7403-7406, July 2016. Keyword(s): crops, geophysical image processing, image reconstruction, radar polarimetry, remote sensing by radar, synthetic aperture radar, 2D polarimetric image, 3D crop field backscattering, 3D forest backscattering distribution, 3D imaging reconstruction, 3D polarimetric image, C-band SAR, DLR F-SAR sensor, Germany, HoloSAR campaign, HoloSAR imaging mode, HoloSAR tomography, Wallerfing, X-band SAR, agricultural crop, azimuthal aspect angle, holographic SAR, scattering mechanisms, tomographic constellation, Tomography, Agricultural crops, Fast Factorized Back-Projection (FFBP), Holographic SAR Tomography (HoloSAR), Polarimetric Synthetic Aperture Radar (PolSAR). [bibtex-entry]


  2. O. Ponce, R. Scheiber, P. Prats, I. Hajnsek, and A. Reigber. Multi-dimensional airborne holographic SAR tomography reconstruction for glaciers at L-/P-band. In Proc. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), pages 9-12, July 2016. Keyword(s): geophysical image processing, glaciology, hydrological techniques, image reconstruction, remote sensing by radar, solid modelling, synthetic aperture radar, 2-D image arc-pattern, 2-D image circular pattern, 3-D imaging reconstructions, Greenland, HoIoSAR campaign, HoloSAR mode, K-Transect, circular synthetic aperture, cryosphere, fast factorized back-projection, fully polarimetric data, glacier structures, glacier vertical profile, ice sheet vertical profile, ice structures, multidimensional airborne holographic SAR tomography reconstruction, vertical synthetic aperture, Apertures, Ice, Image resolution, L-band, Synthetic aperture radar, Tomography, Cryosphere, Fast Factorized Back-Projection (FFBP), Glaciers, Holographic SAR Tomography (HoloSAR), Polarimetric Synthetic Aperture Radar (PolSAR). [bibtex-entry]


  3. R. Que, Octavio Ponce, Rolf Scheiber, and Andreas Reigber. Real-time processing of SAR images for linear and non-linear tracks. In Proc. 17th Int. Radar Symp. (IRS), pages 1-4, May 2016. Keyword(s): airborne radar, backpropagation, radar imaging, synthetic aperture radar, DLR's F-SAR sensor, GPU, SAR images, airborne SAR, direct backprojection, distributed real-time processing, fast factorized back-projection algorithms, linear tracks, multiprocessors multicore CPU, nonlinear tracks, real-time computation, Containers, Graphics processing units, Instruction sets, Interpolation, Radar tracking, Real-time systems, Synthetic aperture radar. [bibtex-entry]


  4. O. Ponce, P. Prats, R. Scheiber, A. Reigber, I. Hajnsek, and A. Moreira. Polarimetric 3-D imaging with airborne holographic SAR tomography over glaciers. In Proc. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), pages 5280-5283, July 2015. Keyword(s): airborne radar, glaciology, hydrological techniques, radar polarimetry, synthetic aperture radar, DLR F-SAR sensor, Findel glacier, HoloSAR campaign, L-band, Monte Rosa, Switzerland, airborne holographic SAR tomography mode, arc-pattern, bedrock vertical profile, biosphere, circular pattern, circular synthetic aperture, cryosphere, glacier backscattering, ice sheet vertical profile, polarimetric 3-D imaging reconstruction, polarimetric analysis, single circular flight, snow vertical profile, vertical synthetic aperture, Apertures, Ice, Image resolution, Radar imaging, Synthetic aperture radar, Tomography, Compressive Sensing (CS), Cryosphere, Fast Factorized Back-Projection (FFBP), Holographic SAR Tomography (HoloSAR), Polarimetric Synthetic Aperture Radar (PolSAR). [bibtex-entry]


  5. Jan Torgrimsson, Patrik Dammert, Hans Hellsten, and Lars M. H. Ulander. Autofocus and analysis of geometrical errors within the framework of fast factorized back-projection. In Edmund Zelnio and Frederick D. Garber, editors, Proc. SPIE, volume 9093, pages 909303-909303-16, 2014. International Society for Optics and Photonics, SPIE. Keyword(s): SAR Processing, Fast-Factorized Back-Projection, FFBP, Time-Domain Back-Projection, TDBP, Autofocus, SAR Autofocus, Geometrical Autofocus, Airborne SAR, CARABAS, factorized geometrical autofocus algorithm, fast factorized back-projection chain, gain 3 dB, intensity correlation, object function, peak-to-sidelobe ratio measurement, radar imaging, residual space variant range cell migration, ultrawideband synthetic aperture radar processing, Apertures, Electronics packaging, Geometry, Radar tracking, Synthetic aperture radar, Transforms, Autofocus, back-projection, phase gradient algorithm, PGA, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  6. Kerry E. Dungan, LeRoy A. Gorham, and Linda J. Moore. SAR digital spotlight implementation in MATLAB. In Proc. SPIE, volume 8746, pages 1-11, 2013. Keyword(s): SAR Processing, Azimuth Focusing, Digital Spotlighting, Time-Domain Back-Projection, TDBP, Fast-Factorized Back-Projection, FFBP, MATLAB. [Abstract] [bibtex-entry]


  7. O. Ponce, P. Prats, R. Scheiber, A. Reigber, and A. Moreira. Analysis and optimization of multi-circular SAR for fully polarimetric holographic tomography over forested areas. In Proc. IEEE Int. Geoscience and Remote Sensing Symp. - IGARSS, pages 2365-2368, July 2013. Keyword(s): geophysical image processing, holography, radar imaging, radar polarimetry, synthetic aperture radar, vegetation, 3D resolution, DLR F-SAR sensor, GLRT algorithm, Germany, IRF, Kauf-beuren, L-band, acquisition geometry, anisotropic analysis, forested areas, fully polarimetric holographic tomography, generalized likelihood ratio test, holographic SAR tomograms, impulse response function, incoherent imaging, multicircular SAR analysis, multicircular SAR optimization, polarimetric MCSAR campaign, scatterers, sidelobe suppression, system bandwidth, Apertures, Bandwidth, Geometry, Image resolution, Imaging, Synthetic aperture radar, Anisotropy, compressive sensing (CS), fast factorized back-projection (FFBP), holographic tomography, multi-circular synthetic aperture radar (MCSAR), polarimetric synthetic aperture radar (PolSAR). [bibtex-entry]


  8. O. Ponce, P. Prats, R. Scheiber, A. Reigber, and A. Moreira. First demonstration of 3-D holographic tomography with fully polarimetric multi-circular SAR at L-band. In Proc. IEEE Int. Geoscience and Remote Sensing Symp. - IGARSS, pages 1127-1130, July 2013. Keyword(s): airborne radar, array signal processing, compressed sensing, geophysical image processing, holography, optical focusing, optical tomography, radar imaging, radar polarimetry, radar resolution, synthetic aperture radar, transient response, 3D holographic tomography, 3D polarimetric holographic tomogram, 3D sidelobe reduction, BF, CS, DLR F-SAR airborne system, Earth analysis, IRF, Kaufbeuren Germany, L-band, MCSAR, beamforming, coherent 3D radar backscattering, compressive sensing, dry soil, forested area, fully polarimetric multicircular SAR, ice, impulse response function, multiangular measurement acquisition, temporal decorrelation, volume scatterer, Apertures, Bandwidth, Image resolution, Imaging, Synthetic aperture radar, Vegetation, Circular synthetic aperture radar (CSAR), compressive sensing (CS), fast factorized back-projection (FFBP), holographic tomography, polarimetric synthetic aperture radar (PolSAR). [bibtex-entry]


  9. Angel Ribalta. Optimizing the factorisation parameters in the fast factorized backprojection algorithm. In Proc. EUSAR 2012 - 9th European Conference on Synthetic Aperture Radar, pages 356-359, April 2012. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, Fast-Factorized Back-Projection, FFBP, Optimization, Factorization Parameter Optimization. [Abstract] [bibtex-entry]


  10. O. Ponce, P. Prats, M. Rodriguez-Cassola, R. Scheiber, and A. Reigber. Processing of Circular SAR trajectories with Fast Factorized Back-Projection. In Proc. IEEE Int. Geoscience and Remote Sensing Symp, pages 3692-3695, July 2011. Keyword(s): geophysical techniques, remote sensing by radar, Circular SAR trajectories, Germany, Kaufbeuren region, azimuth variance, computational time factor, fast factorized back-projection, graphics processor unit, Accuracy, Apertures, Focusing, Geometry, Graphics processing unit, Image resolution, Trajectory, Circular SAR (CSAR), Fast Back Projection (FBP), Graphics Processor Unit (GPU), focusing, polarimetry. [bibtex-entry]


  11. Viet Thuy Vu, Thomas K. Sjogren, and Mats I. Pettersson. Fast backprojection algorithm for UWB bistatic SAR. In Proc. IEEE Radar Conf., pages 431-434, May 2011. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, Fast Factorized Back-Projection, FFBP, Back-Projection, UWB SAR, bistatic SAR, Motion Compensation, MoComp, UWB bistatic SAR, beamforming, bistatic fast backprojection algorithm, ground image plane, motion compensation, subaperture basis, subimage basis, time-domain characteristics, ultrawideband ultrawidebeam bistatic synthetic aperture radar, array signal processing, motion compensation, radar imaging, synthetic aperture radar, time-domain analysis, ultra wideband radar. [Abstract] [bibtex-entry]


  12. Viet Thuy Vu, Thomas K. Sjogren, and Mats I. Pettersson. Fast factorized backprojection algorithm for UWB SAR image reconstruction. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 4237-4240, July 2011. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, Fast Factorized Back-Projection, FFBP, Back-Projection, UWB SAR, bistatic SAR, Motion Compensation, MoComp, migration handling, one beam forming stage, real time processing, synthetic aperture radar, time-domain characteristics, unlimited scene size, geophysical image processing, remote sensing by radar, synthetic aperture radar. [Abstract] [bibtex-entry]


  13. Charles V. Jakowatz, Daniel E. Wahl, and David A. Yocky. A beamforming algorithm for bistatic SAR image formation. In Edmund G. Zelnio and Frederick D. Garber, editors, , volume 7699, pages 769902, 2010. SPIE. Keyword(s): SAR Processing, Bistatic SAR, Bistatic Spotlight-mode SAR, Autofocus, Autofocus in the TDBP Framework, Back-projection, Time-Domain Back-Projection, TDBP, Fast Back-projection, Fast Factorized Back-Projection, FFBP, Spotlight SAR, Spotlight-mode data, Beamforming. [bibtex-entry]


  14. Charles V. Jakowatz and Daniel E. Wahl. Considerations for autofocus of spotlight-mode SAR imagery created using a beamforming algorithm. In Edmund G. Zelnio and Frederick D. Garber, editors, , volume 7337, pages 73370A, 2009. SPIE. Keyword(s): SAR Processing, Autofocus, Autofocus in the TDBP Framework, Back-projection, Time-Domain Back-Projection, TDBP, Fast Back-projection, Fast-Factorized Back-Projection, FFBP, Spotlight SAR, Spotlight-mode data, Beamforming. [bibtex-entry]


  15. A. Wyholt and Lars M. H. Ulander. Evaluating VHF-band SAR autofocus algorithms using a forest backscatter model. In Proc. IEEE Int. Geosci. Remote Sens. Symp., volume 4, pages 9-12, July 2009. Keyword(s): SAR Processing, Autofocus, Time-Domain Back-Projection, TDBP, FFBP, SAR subimages, VHF-band SAR autofocus algorithms, fast factorized back-projection algorithm, forest backscatter model, forest clutter model, matching error, residual displacement errors, subimage matching, backscatter, focusing, geophysical image processing, image matching, remote sensing by radar, synthetic aperture radar. [Abstract] [bibtex-entry]


  16. Michael Brandfass and Luis Fernando Lobianco. Modified Fast Factorized Backprojection as Applied to X-Band Data for Curved Flight Paths. In European Conference on Synthetic Aperture Radar (EUSAR), pages 4, June 2008. VDE Verlag GmbH. Keyword(s): SAR Processsing, Time-Domain Back-Projection, TDBP, Back-Projection, Fast Factorized Back-Projection, FFBP, Fast Back-Projection, Synthetic Aperture Radar (SAR), motion compensation, tomography, Airborne SAR, X-Band, Motion Compensation, MoComp, Non-Linear SAR, Non-Linear Flight Tracks. [Abstract] [bibtex-entry]


  17. Charles V. Jakowatz, Daniel E. Wahl, and David A. Yocky. Beamforming as a foundation for spotlight-mode SAR image formation by backprojection. In Edmund G. Zelnio and Frederick D. Garber, editors, , volume 6970, pages 69700Q, 2008. SPIE. Keyword(s): SAR Processing, Back-projection, Time-Domain Back-Projection, TDBP, Fast Back-projection, Fast Factorized Back-Projection, FFBP, Spotlight SAR, Spotlight-mode data, Beamforming. [bibtex-entry]


  18. Daniel E. Wahl, David A. Yocky, and Charles V. Jakowatz. An implementation of a fast backprojection image formation algorithm for spotlight-mode SAR. In Edmund G. Zelnio and Frederick D. Garber, editors, , volume 6970, pages 69700H, 2008. SPIE. Keyword(s): SAR Processing, Back-projection, Time-Domain Back-Projection, TDBP, Fast Back-projection, Fast Factorized Back-Projection, FFBP, Spotlight SAR, Spotlight-mode data. [bibtex-entry]


  19. A. Ahlander, H. Hellsten, K. Lind, J. Lindgren, and B. Svensson. Architectural Challenges in Memory-Intensive, Real-Time Image Forming. In Int. Conf. on Parallel Processing, pages 35-35, Sept. 2007. Keyword(s): SAR Processing, Back-Projection, Time-Domain Back-Projection, Fast-Factorized Back-Projection, FFBP, GBP, interpolation, parallel algorithms, parallel architectures, radar imaging, real-time systems, storage management, synthetic aperture radarcomplex memory access pattern, computer architecture, flight path error compensation, memory-intensive real-time image forming, parallel algorithm, performance-intensive data interpolation, synthetic aperture radar system. [Abstract] [bibtex-entry]


  20. Per-Olov Frölind and Lars M. H. Ulander. Evaluation of angular interpolation kernels in fast back-projection SAR processing. In IEE Proceedings -- Radar, Sonar and Navigation, volume 153, pages 243-249, June 2006. Keyword(s): SAR Processing, Time-Domain Back-Projection, Back-Projection, Fast Factorized Back-Projection, Comparison of Algorithms, interpolation, interpolation kernels, angular interpolation kernels, radar imaging, synthetic aperture radar, ultra wideband radar, UWB SAR, interpolation method, phase error, polar version, subimage version, time domain SAR algorithm, Factorized Backprojection. [Abstract] [bibtex-entry]


  21. G. Shippey, S. Banks, and J. Pihl. SAS image reconstruction using Fast Polar Back Projection: comparisons with Fast Factored Back Projection and Fourier-domain imaging. In Oceans 2005 - Europe, volume 1, pages 96-101, June 2005. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, Fast-Factorized Back-Projection, FFBP, Fast Polar Back-Projection, FPBP, fast Fourier transforms, image reconstruction, radar imaging, sonar imaging, synthetic aperture radar, synthetic aperture sonar FFBP, Fast Factored Back Projection, Fast Polar Back Projection, Fourier-domain imaging, SAS image reconstruction, Synthetic Aperture Radar, Synthetic Aperture Sonar, autopositioning purposes, azimuth sidelobe level, computation time reduction, intermediate physical aperture images, multielement sonar arrays, nonlinear platform trajectories, preset approximation error, review, standard FFT-based method, time-domain methods, ultra-wideband airborne SAR, wide bandwidths, wide swaths. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:23:19 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html