BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'SAR Autofocus'

Thesis

  1. Craig L. Stringham. Developments in LFM-CW SAR for UAV Operation. PhD thesis, 2014. Keyword(s): SAR Proceessing, radar, SAR, UAV, GPU, Autofocus, SAR Autofocus, Backprojection, Time-Domain Back-Projection, Back-Projection, TDBP, fast-factorized back-projection, FFBP, LFM-CW, FMCW, MoComp, Motion Compensation, CSA, ECS, Chirp Scaling, Extended Chirp Scaling, FSA, Frequency Scaling Algorithm, Range-Doppler Algorithm, RDA, synthetic aperture radar, Brigham Young University, muSAR system, LFM-CW signal model, SAR image quality, aircraft, atmospheric turbulence, high-resolution synthetic aperture radar systems, linear frequency-modulated continuous-wave signal, motion compensation, motion correction algorithms, unmanned aerial vehicle, Airborne SAR, geophysical techniques. [Abstract] [bibtex-entry]


Articles in journal or book chapters

  1. Jan Torgrimsson, Patrik Dammert, Hans Hellsten, and Lars M. H. Ulander. Factorized Geometrical Autofocus for Synthetic Aperture Radar Processing. IEEE Trans. Geosci. Remote Sens., 52(10):6674-6687, October 2014. Keyword(s): SAR Processing, Fast-Factorized Back-Projection, FFBP, Time-Domain Back-Projection, TDBP, Airborne SAR, CARABAS Autofocus, SAR Autofocus, Geometrical Autofocus, radar imaging, radar tracking, synthetic aperture radar, ultra wideband radar, FGA algorithm, coherent all radio band system II data set, constrained problem, factorized geometrical autofocus algorithm, fast factorized back-projection chain, gain 3 dB, intensity correlation, object function, peak-to-sidelobe ratio measurement, radar imaging, residual space variant range cell migration, ultrawideband synthetic aperture radar processing, Apertures, Electronics packaging, Geometry, Radar tracking, Synthetic aperture radar, Transforms, Autofocus, back-projection, phase gradient algorithm (PGA), synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  2. D. Zhu, R. Jiang, X. Mao, and Z. Zhu. Multi-Subaperture PGA for SAR Autofocusing. IEEE Transactions on Aerospace and Electronic Systems, 49(1):468-488, January 2013. Keyword(s): SAR Processing, Autofocus, synthetic aperture radar, SAR autofocusing, spotlight mode synthetic aperture radar, full-aperture phase gradient autofocus, PGA algorithm, high-order phase error, residual range cell migration, RCM, coherent processing interval, stripmap data, multisubaperture PGA algorithm, map drift technique, subaperture phase error, PGA-MD, Electronics packaging, Synthetic aperture radar, Azimuth, Image resolution, Accuracy, Polynomials, Estimation. [Abstract] [bibtex-entry]


  3. Yake Li, Chang Liu, Yanfei Wang, and Qi Wang. A Robust Motion Error Estimation Method Based on Raw Data. IEEE Trans. Geosci. Remote Sens., 50(7):2780-2790, 2012. Keyword(s): SAR Processing, Autofocus, SAR Autofocus, MoComp, Motion Compensation, curve fitting, geophysical image processing, least squares approximations, motion compensation, radar imaging, remote sensing by radar, synthetic aperture radar, RCMC, aircraft reference track deviations, curve fitting, double phase gradient estimation, filtering method, high order motion errors, high precision navigation system, high resolution airborne SAR systems, high resolution imagery, image processing, image quality, large swath mode, light aircraft SAR platform, motion compensation, motion error estimation method, range cell migration correction, range dependent phase errors, range resolution improvement, raw data, synthetic aperture radar, weighted total least square method, Aircraft, Azimuth, Electronics packaging, Error analysis, Estimation, Robustness, Trajectory, Autofocus, motion error estimation, phase gradient filtering, synthetic aperture radar (SAR), weighted total least square (WTLS) method. [Abstract] [bibtex-entry]


  4. Hubert M.J. Cantalloube and Carole E. Nahum. Multiscale Local Map-Drift-Driven Multilateration SAR Autofocus Using Fast Polar Format Image Synthesis. IEEE Trans. Geosci. Remote Sens., 49(10):3730-3736, 2011. Keyword(s): SAR Processing, Autofocus, SAR Autofocus, MoComp, Motion Compensation, Map-Drift Autofocus, Multiscale Local Map-Drift, geophysical image processing, geophysical techniques, image registration, remote sensing by radar, synthetic aperture radar, SAR high-resolution imaging, autofocus method, bistatic errors, bistatic synthetic aperture radar autofocus, clock drift errors, coarse-to-fine resolution, fast polar format image synthesis, frequency-domain polar format algorithm, local images, multilateration, range-clipped Doppler low-filtered profiles, target points, Doppler effect, Equations, Image resolution, Optical transmitters, Receivers, Synthetic aperture radar, Trajectory, Airborne radar, bistatic synthetic aperture radar (SAR), focusing. [Abstract] [bibtex-entry]


  5. P. Samczynski and K.S. Kulpa. Coherent MapDrift Technique. IEEE Trans. Geosci. Remote Sens., 48(3):1505-1517, 2010. Keyword(s): SAR Processing, Autofocus, SAR Autofocus, MoComp, Motion Compensation, Map-Drift Autofocus, Coherent Map-Drift Autofocus, geophysical signal processing, radar signal processing, remote sensing by radar, synthetic aperture radar, target tracking, Earth imaging, MapDrift principles, coherent MapDrift technique, flight parameter estimation, moving target indication, parametric autofocus technique, real time processing, strip mode SAR systems, synthetic aperture radar, Autofocus, MD, coherent MapDrift (CMD), moving-target indication (MTI), multilook, subaperture, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  6. R. L. Morrison, M. N. Do, and D. C. Munson. MCA: A Multichannel Approach to SAR Autofocus. IEEE Transactions on Image Processing, 18(4):840-853, April 2009. Keyword(s): SAR Processing, Autofocus, SAR autofocus, defocusing operation, focused image, image restoration, linear algebraic formulation, multichannel autofocus, multichannel redundancy, sharpness metric optimization, synthetic aperture radar, vector-space formulation, image restoration, linear algebra, synthetic aperture radar;. [Abstract] [bibtex-entry]


  7. Robert. L. Morrison, Minh N. Do, and David C. Munson. SAR Image Autofocus By Sharpness Optimization: A Theoretical Study. IEEE Transactions on Image Processing, 16(9):2309-2321, September 2007. Keyword(s): SAR Processing, Autofocus, SAR image autofocus, intensity-squared metric, point-targets image, sharpness optimization, synthetic aperture radar, image processing, optimisation, synthetic aperture radar, Algorithms, Artificial Intelligence, Computer Simulation, Image Enhancement, Image Interpretation, Computer-Assisted, Models, Theoretical, Pattern Recognition, Automated, Reproducibility of Results, Sensitivity and Specificity;. [Abstract] [bibtex-entry]


  8. T. J. Schulz. Optimal Sharpness Function for SAR Autofocus. IEEE Signal Processing Letters, 14(1):27-30, January 2007. Keyword(s): error correction, error statistics, maximum likelihood estimation, radar imaging, synthetic aperture radar, image-domain sharpness function, autofocusing, phase-error correction, synthetic aperture radar imagery, SAR, optimization, statistical estimation, maximum-likelihood estimation, maximum-posterior estimation, intensity-squared sharpness, Layout, Phase estimation, Optimization methods, Synthetic aperture radar, Discrete Fourier transforms, Maximum likelihood estimation, Reflectivity, Error correction, Computer errors, Signal processing, MAP estimation, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


Conference articles

  1. Daniel Henke, Max Frioud, Julian Fagir, Sebastien Guillaume, Michael Meindl, Alain Geiger, S. Sieger, D. Janssen, F. Kloppel, M. Caris, S. Stanko, M. Renker, and Peter Wellig. Miranda35 Experiments in Preparation for Small UAV-Based SAR. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 8542-8545, July 2019. Keyword(s): airborne radar, autonomous aerial vehicles, CW radar, FM radar, Global Positioning System, image motion analysis, radar imaging, radar receivers, synthetic aperture radar, units (measurement), frequency-modulated continuous-wave synthetic aperture radar, energy efficiency, navigation data, inertial measurement unit, IMU, SAR image quality, airborne platform, SAR autofocus, small UAV-based SAR systems, FMCW SAR, Miranda35 experiments, moving baseline differential GPS, optical structure-from-motion-based localization, FHR FMCW MIRANDA35 sensor, Synthetic aperture radar, Global Positioning System, Radar polarimetry, Cameras, Optical sensors, SAR autofocus, navigation, synthetic aperture radar, small UAV. [Abstract] [bibtex-entry]


  2. Jan Torgrimsson, Patrik Dammert, Hans Hellsten, and Lars M. H. Ulander. Autofocus and analysis of geometrical errors within the framework of fast factorized back-projection. In Edmund Zelnio and Frederick D. Garber, editors, Proc. SPIE, volume 9093, pages 909303-909303-16, 2014. International Society for Optics and Photonics, SPIE. Keyword(s): SAR Processing, Fast-Factorized Back-Projection, FFBP, Time-Domain Back-Projection, TDBP, Autofocus, SAR Autofocus, Geometrical Autofocus, Airborne SAR, CARABAS, factorized geometrical autofocus algorithm, fast factorized back-projection chain, gain 3 dB, intensity correlation, object function, peak-to-sidelobe ratio measurement, radar imaging, residual space variant range cell migration, ultrawideband synthetic aperture radar processing, Apertures, Electronics packaging, Geometry, Radar tracking, Synthetic aperture radar, Transforms, Autofocus, back-projection, phase gradient algorithm, PGA, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  3. O.O. Bezvesilniy, I. M. Gorovyi, and D. M. Vavriv. Estimation of phase errors in SAR data by Local-Quadratic map-drift autofocus. In Proc. Int. Radar Symp., pages 376-381, 2012. Keyword(s): SAR Processing, Autofocus, SAR Autofocus, MoComp, Motion Compensation, Map-Drift Autofocus, airborne radar, radar imaging, synthetic aperture radar, SAR data, SAR images, X-band airborne SAR system, arbitrary residual phase error, local-quadratic map-drift autofocus, phase error estimation, quadratic errors, small data blocks, uncompensated phase errors, Antennas, Azimuth, Bandwidth, Doppler effect, Measurement uncertainty, Radar, Trajectory, autofocus, map-drift, motion compensation, motion errors, synthetic aperture radar. [Abstract] [bibtex-entry]


  4. A. Wyholt and Lars M. H. Ulander. Evaluating VHF-band SAR autofocus algorithms using a forest backscatter model. In Proc. IEEE Int. Geosci. Remote Sens. Symp., volume 4, pages 9-12, July 2009. Keyword(s): SAR Processing, Autofocus, Time-Domain Back-Projection, TDBP, FFBP, SAR subimages, VHF-band SAR autofocus algorithms, fast factorized back-projection algorithm, forest backscatter model, forest clutter model, matching error, residual displacement errors, subimage matching, backscatter, focusing, geophysical image processing, image matching, remote sensing by radar, synthetic aperture radar. [Abstract] [bibtex-entry]


  5. R.L. Morrison, Jr. and David C. Munson, Jr.. An experimental study of a new entropy-based SAR autofocus technique. In Image Processing. 2002. Proceedings. 2002 International Conference on, volume 2, pages 441-444, September 2002. Keyword(s): SAR Processing, Autofocus, Phase Gradient Autofocus. [bibtex-entry]


  6. Carole E. Nahum. Autofocusing using multiscale local correlation. In Proc. SPIE, volume 3497, pages 21-30, 1998. Keyword(s): SAR Processing, Autofocus, SAR Autofocus, MoComp, Motion Compensation, Map-Drift Autofocus, airborne radar, radar imaging, synthetic aperture radar, SAR data, SAR images, X-band airborne SAR system, arbitrary residual phase error, local-quadratic map-drift autofocus, phase error estimation, quadratic errors, small data blocks, uncompensated phase errors, Antennas, Azimuth, Bandwidth, Doppler effect, Measurement uncertainty, Radar, Trajectory, autofocus, map-drift, motion compensation, motion errors, synthetic aperture radar. [Abstract] [bibtex-entry]


  7. Chan Hian Lim and Yeo Tat Soon. Non-iterative spotlight SAR autofocusing using a modified phase-gradient approach. In Geoscience and Remote Sensing, 1997. IGARSS '97. 'Remote Sensing - A Scientific Vision for Sustainable Development'., 1997 IEEE International, volume 1, pages 484-486, August 1997. Keyword(s): SAR Processing, Autofocus, Phase Gradient Autofocus. [bibtex-entry]


  8. D.E. Wahl, C.V. Jakowatz, and P.A. Thompson. New approach to strip-map SAR autofocus. In Digital Signal Processing Workshop, 1994., 1994 Sixth IEEE, pages 53-56, October 1994. Keyword(s): SAR Processing, Autofocus, Phase Curvature Autofocus, Phase Gradient Autofocus. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:24:47 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html