BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'Error correction'

Articles in journal or book chapters

  1. Benjamin Thomas, Alan Hunter, and Samantha Dugelay. Phase Wrap Error Correction by Random Sample Consensus With Application to Synthetic Aperture Sonar Micronavigation. IEEE Journal of Oceanic Engineering, pp 1-15, 2020. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, Delay effects, Synthetic aperture sonar, SAS, Estimation, Bandwidth, Synthetic aperture radar, Robustness, Phase unwrapping, synthetic aperture radar (SAR), synthetic aperture sonar (SAS), time delay estimation. [Abstract] [bibtex-entry]


  2. Pengfei Xie, Man Zhang, Lei Zhang, and Guanyong Wang. Residual Motion Error Correction with Backprojection Multisquint Algorithm for Airborne Synthetic Aperture Radar Interferometry. Sensors, 19(10), 2019. Keyword(s): SAR Processing, Time-Domain Back-Projection, Back-Projection, TDBP, Non-Linear Flight Tracks, Curvilinear SAR, digital elevation model, Airborne SAR, Motion Compensation, MoComp, Residual Motion Errors, Multisquint, Multi-aperture interferometry, MAI. [Abstract] [bibtex-entry]


  3. Muriel Pinheiro, Andreas Reigber, Rolf Scheiber, Pau Prats-Iraola, and Alberto Moreira. Generation of Highly Accurate DEMs Over Flat Areas by Means of Dual-Frequency and Dual-Baseline Airborne SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, pp 1-30, 2018. Keyword(s): Calibration, Data models, Decorrelation, Interferometry, Standards, Surfaces, Synthetic aperture radar, Digital elevation model (DEM), SAR interferometry (InSAR)., dual frequency, repeat-pass interferometry. [Abstract] [bibtex-entry]


  4. T. J. Schulz. Optimal Sharpness Function for SAR Autofocus. IEEE Signal Processing Letters, 14(1):27-30, January 2007. Keyword(s): error correction, error statistics, maximum likelihood estimation, radar imaging, synthetic aperture radar, image-domain sharpness function, autofocusing, phase-error correction, synthetic aperture radar imagery, SAR, optimization, statistical estimation, maximum-likelihood estimation, maximum-posterior estimation, intensity-squared sharpness, Layout, Phase estimation, Optimization methods, Synthetic aperture radar, Discrete Fourier transforms, Maximum likelihood estimation, Reflectivity, Error correction, Computer errors, Signal processing, MAP estimation, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  5. E.J. Candes and T. Tao. Decoding by linear programming. IEEE Transactions on Information Theory, 51(12):4203-4215, December 2005. Keyword(s): Gaussian random matrix, basis pursuit, linear code decoding, linear programming, minimization problem, natural error correcting problem, simple convex optimization problem, sparse solution, uncertainty principle, Gaussian processes, convex programming, decoding, error correction codes, indeterminancy, linear codes, linear programming, minimisation, random codes, sparse matrices;. [Abstract] [bibtex-entry]


  6. Pau Prats, Andreas Reigber, and Jordi J. Mallorqui. Interpolation-free coregistration and phase-correction of airborne SAR interferograms. IEEE Geosci. Remote Sens. Lett., 1(3):188-191, 2004. Keyword(s): SAR Processing, Airborne SAR, calibration, Interferometry, L-Band, synthetic aperture radar, airborne L-band repeat-pass interferometry, airborne SAR interferograms, azimuth registration errors, interpolation-free coregistration, navigation system, phase azimuth undulations, residual motion error correction, spectral diversity technique, Calibration, SAR, image registration, interferometry, Motion Compensation, repeat-pass interferometry. [Abstract] [bibtex-entry]


  7. Pau Prats and Jordi J. Mallorqui. Estimation of azimuth phase undulations with multisquint processing in airborne interferometric SAR images. IEEE Trans. Geosci. Remote Sens., 41(6):1530-1533, 2003. Keyword(s): SAR Processing, Squinted SAR, airborne radar, radar imaging, synthetic aperture radar, ESAR, DLR experimental airborne SAR, Germany, Oberpfaffenhofen test site, azimuth phase undulations, calibration, image pairs, interferometric airborne synthetic aperture radar systems, multisquint processing, phase error correction, phase error detection, single-pass interferometrie data, squint angles, technique, InSAR, Interferometry. [Abstract] [bibtex-entry]


  8. A. Reigber. Correction of residual motion errors in airborne SAR interferometry. Electronics Letters, 37(17):1083-1084, 2001. Keyword(s): SAR Processing, airborne radar, error correction, motion compensation, radar interference, radiowave interferometry, synthetic aperture radar, airborne SAR interferometry, airborne repeat pass interferometric SAR data, interferometric phase, residual motion compensation errors, residual motion error correction, uncompensated motion errors, Motion Compensation, Interferometry, interferometric SAR. [Abstract] [bibtex-entry]


  9. D.E. Wahl, P.H. Eichel, D.C. Ghiglia, and C.V. Jakowatz. Phase gradient autofocus-a robust tool for high resolution SAR phase correction. IEEE Transactions on Aerospace and Electronic Systems, 30(3):827-835, July 1994. Keyword(s): SAR Processing, Autofocus, Phase Gradient Autofocus. [Abstract] [bibtex-entry]


  10. Joćo Moreira. A New Method Of Aircraft Motion Error Extraction From Radar Raw Data For Real Time Motion Compensation. IEEE Transactions on Geoscience and Remote Sensing, 28(4):620-626, July 1990. Keyword(s): SAR Processing, Autofocus, Motion Compensation, MoComp, Residual Motion Errors, Airborne SAR, ESAR. [Abstract] [bibtex-entry]


Conference articles

  1. H. Liao and F. J. Meyer. Ionospheric effect correction of ice motion mapping using interferometric synthetic aperture radar. In Proc. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), pages 6502-6504, July 2016. Keyword(s): adaptive filters, geophysical signal processing, glaciology, ice, ionosphere, radar interferometry, remote sensing by radar, synthetic aperture radar, AD 1990, Antarctica, C-band ERS1-2, Envisat ASAR, Greenland, InSAR-based ionospheric correction, L-band ALOS 1-2 PALSAR SAR data, Radarsat-1-2, Sentinel-1, X band TerraSAR-X, adaptive filter technique, automatic phase unwrapping error correction, coregistration technique, differential ionospheric phase signal, error correction algorithm, filter-based method, ice mass balance, ice motion analysis, ice motion mapping, ice motion monitoring, ice sheet, ice velocity, interferogram, interferometric synthetic aperture radar, ionospheric effect correction, ionospheric error, ionospheric phase delay, sea level rise, split spectrum technique, Ice, Ionosphere, L-band, Monitoring, Sea level, Synthetic aperture radar. [bibtex-entry]


  2. Michael Brandfass and Luis Fernando Lobianco. Modified Fast Factorized Backprojection as Applied to X-Band Data for Curved Flight Paths. In European Conference on Synthetic Aperture Radar (EUSAR), pages 4, June 2008. VDE Verlag GmbH. Keyword(s): SAR Processsing, Time-Domain Back-Projection, TDBP, Back-Projection, Fast Factorized Back-Projection, FFBP, Fast Back-Projection, Synthetic Aperture Radar (SAR), motion compensation, tomography, Airborne SAR, X-Band, Motion Compensation, MoComp, Non-Linear SAR, Non-Linear Flight Tracks. [Abstract] [bibtex-entry]


  3. J. Kolman. PACE: an autofocus algorithm for SAR. In Proc. IEEE Int. Radar Conference, pages 310-314, May 2005. Keyword(s): SAR Processing, Autofocus, Phase Adjustment by Contrast Enhancement, PACE, Azimuth, Focusing, Error correction, Synthetic aperture radar, Phase measurement, Pixel, Flexible printed circuits, Hardware, History, Error analysis. [bibtex-entry]


  4. P. Prats, J. J. Mallorqui, and A. Broquetas. Calibration of interferometric airborne SAR images using a multisquint processing approach. In Geoscience and Remote Sensing Symposium, 2003. IGARSS '03. Proceedings. 2003 IEEE International, volume 7, pages 4353-4355, July 2003. Keyword(s): SAR Processing, Motion Compensation, ESAR, L-Band, X-Band, Airborne SAR, Squinted SAR, Interferometry, azimuth phase undulations, calibration, image pairs, interferometric airborne synthetic aperture radar systems, InSAR, multisquint processing, phase error correction, phase error detection, single-pass interferometrie data. [bibtex-entry]


  5. Rolf Scheiber and P. Robert. Origin and correction of phase errors in airborne repeat-pass SAR interferometry. In IEEE Int. Geosci. Remote Sens. Symp., volume 7, pages 3114-3116, Jul. 2001. Keyword(s): SAR Processing, SAR Interferometry, Phase Errors, Airborne SAR, E-SAR, DLR, geophysical techniques, terrain mapping, airborne radar, remote sensing by radar, synthetic aperture radar, motion error, geophysical measurement technique, land surface, terrain mapping, radar remote sensing, phase error, airborne radar, repeat pass method, SAR interferometry, InSAR, synthetic aperture radar, residual motion error, L-band, UHF, quantitative analysis, Error correction, Radar tracking, Radio interferometry, Space technology, Radio frequency, L-band, Aircraft, Global Positioning System, Geometry. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:23:16 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html