BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'Aliasing'

Articles in journal or book chapters

  1. S. A. V. Synnes, A. J. Hunter, Roy E. Hansen, T. O. Saebo, H. J. Callow, R. van Vossen, and A. Austeng. Wideband Synthetic Aperture Sonar Backprojection With Maximization of Wave Number Domain Support. IEEE Journal of Oceanic Engineering, 42(4):880-891, October 2017. Keyword(s): Synthetic Aperture Sonar, SAS, image filtering, image resolution, optimisation, sensor arrays, sonar imaging, synthetic aperture sonar, time-domain analysis, BP, SAS arrays, SAS image formation algorithms, TDBP access data, WD filtering, aspect-dependent scattering, data degradation, frequency-dependent scattering, generic SAS design, sensor data quality, spatial domain quality metrics, time domain backprojection access data, wave number domain counterpart, wave number domain support maximization, wideband SAS systems, wideband synthetic aperture sonar backprojection, widebeam synthetic aperture sonar backprojection, Image resolution, Imaging, Performance evaluation, Scattering, Sonar applications, Synthetic aperture sonar, Wideband, Along-track ambiguity, backprojection (BP) algorithm, grating lobes, synthetic aperture sonar (SAS), wideband sonar. [Abstract] [bibtex-entry]


  2. Guangcai Sun, Mengdao Xing, Yong Wang, Yufeng Wu, YiRong Wu, and Zheng Bao. Sliding Spotlight and TOPS SAR Data Processing Without Subaperture. IEEE Geosci. Remote Sens. Lett., 8(6):1036-1040, November 2011. Keyword(s): SAR Processing, TOPS, Terrain Observation by Progressive Scans, data acquisition, synthetic aperture radar, Doppler domain, TOPS SAR data processing, azimuth bandwidth, azimuth signal aliasing, data acquisition, imaging algorithm, instantaneous bandwidth, progressive scan, pulse repetition frequency, sliding spotlight, subaperture method, synthetic aperture radar, terrain observation, Azimuth, Bandwidth, Chirp, Focusing, Signal processing algorithms, Synthetic aperture radar, Sliding spotlight synthetic aperture radar (SAR), subaperture, terrain observation by progressive scan (TOPS) SAR. [Abstract] [bibtex-entry]


  3. Wei Xu, Pingping Huang, Yunkai Deng, Jiantao Sun, and Xiuqin Shang. An Efficient Approach With Scaling Factors for TOPS-Mode SAR Data Focusing. IEEE Geosci. Remote Sens. Lett., 8(5):929-933, Sept 2011. Keyword(s): SAR Processing, TOPS, Terrain Observation by Progressive Scans, geophysical techniques, synthetic aperture radar, Doppler spectrum, ScanSAR, TOPS-mode SAR data focusing, TOPS-mode synthetic aperture radar data, Terrain Observation by Progressive Scans mode, azimuth baseband scaling operation, azimuth scaling factors, extended chirp scaling processing procedure, full-aperture imaging approach, limited azimuth-data extension, residual TOPS raw-data focusing, sliding spotlight SAR data focusing, spaceborne imaging mode, two-step focusing technique, wide-swath coverage, Azimuth, Bandwidth, Doppler effect, Focusing, Image resolution, Remote sensing, Aliasing, Terrain Observation by Progressive Scans (TOPS), deramp, extended chirp scaling, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  4. M.-P. Doin, C. Lasserre, G. Peltzer, O. Cavalié, and C. Doubre. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models. Journal of Applied Geophysics, 69(1):35-50, September 2009. Note: Advances in SAR Interferometry from the 2007 Fringe Workshop. Keyword(s): Radar interferometry, Phase propagation delay, Global climate model, Stratified atmosphere, InSAR, Troposphere, Tropospheric Delay, SAR Interferometry, Interferometry, Spaceborne SAR. [Abstract] [bibtex-entry]


  5. Lei Zhang, Cheng-Wei Qiu, Mengdao Xing, and Zheng Bao. Azimuth preprocessing for monostatic and bistatic spotlight synthetic aperture radar maging based on spectral analysis convolution. Journal of Applied Remote Sensing, 3(1):1-20, January 2009. Keyword(s): SAR Processing, Bistatic SAR, SPECAN, Azimuth Focusing, Spotlight SAR, Spotlight-mode data. [Abstract] [bibtex-entry]


  6. Mehrdad Soumekh, David A. Nobles, Michael C. Wicks, and Gerard J. Genello. Signal Processing of Wide Bandwidth and Wide Beamwidth P-3 SAR data. IEEE Transactions on Aerospace and Electronic Systems, 37(4):1122-1141, October 2001. Keyword(s): SAR Processing, P-Band, Ultra-Wideband SAR, Time-Domain Back-Projection, TDBP, Back-Projection, RFI Suppression. [Abstract] [bibtex-entry]


  7. R. H. Stolt. Migration by Fourier Transform. Geophysics, 43(1):23-48, February 1978. Keyword(s): SAR Processing, Migration, Wavenumber Domain Algorithm, omega-k, Range Migration Algorithm, Stolt Mapping. [Abstract] [bibtex-entry]


Conference articles

  1. Marc Rodriguez-Cassola, Pau Prats-Iraola, Francesco De Zan, Rolf Scheiber, and Andreas Reigber. Doppler-related focusing aspects in the TOPS imaging mode. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 2043-2046, July 2013. Keyword(s): SAR Processing, TOPS, Terrain Observation by Progressive Scans, geophysical techniques, synthetic aperture radar, Doppler spectrum, ScanSAR, TOPS-mode SAR data focusing, TOPS-mode synthetic aperture radar data, Terrain Observation by Progressive Scans mode, azimuth baseband scaling operation, azimuth scaling factors, extended chirp scaling processing procedure, full-aperture imaging approach, limited azimuth-data extension, residual TOPS raw-data focusing, sliding spotlight SAR data focusing, spaceborne imaging mode, two-step focusing technique, wide-swath coverage, Azimuth, Bandwidth, Doppler effect, Focusing, Image resolution, Remote sensing, Aliasing, Terrain Observation by Progressive Scans (TOPS), deramp, extended chirp scaling, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  2. Lam H. Nguyen, Marc Ressler, D. Wong, and Mehrdad Soumekh. Enhancement of backprojection SAR imagery using digital spotlighting preprocessing. In Radar Conference, 2004. Proceedings of the IEEE, pages 53-58, 2004. Keyword(s): SAR Processing, Back-Projection, Time-Domain Back-Projection, Digital Spotlighting, Boom-SAR, Self-Induced Resonance Suppression, SIR Suppression, RFI Suppression, Doppler effect, antialiasing, image enhancement, radar imaging, synthetic aperture radar, ARL boom-SAR data, Doppler aliasing suppression, PRF, SAR data filtering scheme, SAR imagery enhancement, azimuth-compressed SAR data, back-projection SAR imagery, digital spotlighting preprocessing, image fidelity improvement, radar radiation pattern, side lobe artifacts. [Abstract] [bibtex-entry]


  3. Roger R.-Y. Lee, James S. Verdi, and Mehrdad Soumekh. Enhancements of NP-3 UHF Image Quality Using Digital Spotlighting Technique. In Proceedings of the 2001 IEEE Radar Conference, pages 1-6, May 2001. Keyword(s): SAR Processing, Wavefront Reconstruction, Wavenumber Domain Algorithm, omega-k, RFI Suppression, Subaperture Processing, Digital Spotlighting, Slow-Time Upsampling, Alias-free Processing, Quadband SAR, P-Band, X-Band, L-Band, C-Band, Airborne SAR. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:22:36 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html