BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'velocity field'

Articles in journal or book chapters

  1. Brent G. Delbridge, Roland Bürgmann, Eric Fielding, Scott Hensley, and William H. Schulz. Three-dimensional surface deformation derived from airborne interferometric UAVSAR: Application to the Slumgullion Landslide. Journal of Geophysical Research: Solid Earth, 121(5):3951-3977, 2016. Keyword(s): SAR Processing, UAVSAR, landslide, Slumgullion, InSAR, geodesy, inversion, DInSAR, Airborne DInSAR, Surface Displacement, Deformation, Airborne SAR, L-band. [Abstract] [bibtex-entry]


  2. Marko Komac, Rachel Holley, Pooja Mahapatra, Hans van der Marel, and Milos Bavec. Coupling of GPS/GNSS and radar interferometric data for a 3D surface displacement monitoring of landslides. Landslides, 12(2):241-257, April 2015. [Abstract] [bibtex-entry]


  3. Esra Erten, Andreas Reigber, Olaf Hellwich, and Pau Prats. Glacier Velocity Monitoring by Maximum Likelihood Texture Tracking. IEEE Transactions on Geoscience and Remote Sensing, 47(2):394-405, Feb. 2009. Keyword(s): SAR Processing, glaciology, hydrological techniques, image processing, maximum likelihood estimation, remote sensing by radar, spaceborne radar, synthetic aperture radar, Asia, ENVISAT-ASAR data acquisition, Inyltshik glacier, Kyrgyzstan, Maximum Likelihood Texture Tracking, alpine glacier systems, classical intensity tracking technique, glacier velocities measurement, glacier velocity monitoring, ice flows, intensity-based matching algorithm, melting, multiplicative speckle/noise model, remotely sensed data, signal-to-noise ratio, snowfall, spatial dynamics, speckle decorrelation, statistical description, synthetic aperture radar data, temporal dynamics, temporal speckle structure, tracking algorithm. [Abstract] [bibtex-entry]


  4. Pau Prats, Rolf Scheiber, Andreas Reigber, Christian Andres, and Ralf Horn. Estimation of the Surface Velocity Field of the Aletsch Glacier Using Multibaseline Airborne SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 47(2):419-430, Feb. 2009. Keyword(s): SAR Processing, InSAR, DInSAR, airborne SAR, glaciology, hydrological techniques, SAR Interferometry, Interferometry, remote sensing by radar, synthetic aperture radar, Aletsch Glacier, Alps, German Aerospace Center, L-band, airborne interferometric synthetic aperture radar, data acquisition, differential interferometry, experimental SAR system, line-of-sight displacement, multisquint approach, navigation system, residual motion errors, surface velocity field estimation, temperate glaciers, ESAR. [Abstract] [bibtex-entry]


  5. D. Leva, G. Nico, D. Tarchi, J. Fortuny-Guasch, and A.J. Sieber. Temporal analysis of a landslide by means of a ground-based SAR Interferometer. IEEE Trans. Geosci. Remote Sens., 41(4):745-752, April 2003. Keyword(s): Feeds, Global Positioning System, Image sequence analysis, Instruments, Interferometry, Layout, Monitoring, Morphology, Position measurement, Terrain factors, geomorphology, geophysical techniques, radiowave interferometry, synthetic aperture radar, terrain mapping, 16.70 to 16.78 GHz, 700 to 1150 m, Austria, D-InSAR, GBSAR interferometer, GPS receivers, Schwaz, Tyrol, accumulation zone, debris flow, deformation map, differential synthetic aperture radar interferometry, ground-based synthetic aperture radar interferometer, high-resolution images, interferogram sequence, landslide monitoring, landslides, phase image analysis, slowly deforming upper scarp, terrain morphology, velocity field;. [Abstract] [bibtex-entry]


  6. R. Kwok and M.A. Fahnestock. Ice sheet motion and topography from radar interferometry. IEEE Trans. Geosci. Remote Sens., 34(1):189-200, January 1996. Keyword(s): SAR Processing, Interferometry, SAR interferometry, differential SAR interferometry, DInSAR, Displacement, Surface Displacement, glaciology, hydrological techniques, radar applications, radar imaging, remote sensing by radar, spaceborne radar, synthetic aperture radar, Greenland, SAR method, flow, geophysical measurement technique, glaciology, hydrology, ice sheet motion, motion, polar ice sheet, radar interferometry, radar remote sensing, repeat pass ERS-1 interferogram, surface displacement field, topography, velocity field, Data mining, Ice surface, Laboratories, Propulsion, Radar interferometry, Satellites, Space technology, Streaming media, Surface topography, Synthetic aperture radar. [Abstract] [bibtex-entry]


Conference articles

  1. Silvan Leinss, Shiyi Li, and Othmar Frey. Measuring Glacier Velocity by Autofocusing Temporally Multilooked SAR Time Series. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 5493-5496, July 2021. IEEE. [Abstract] [bibtex-entry]


  2. Silvan Leinss, Shiyi Li, Philipp Bernhard, and Othmar Frey. Temporal Multi-Looking of SAR Image Series for Glacier Velocity Determination and Speckle Reduction. In EGU General Assembly 2020, volume EGU2020-3643, May 2020. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:25:31 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html