BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'satellite systems'

Articles in journal or book chapters

  1. Roberto Coscione, Irena Hajnsek, Charles Werner, and Othmar Frey. Assessing the impact of positioning errors in car-borne repeat-pass SAR interferometry with a controlled rail-based experiment. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15:8402-8415, 2022. Keyword(s): SAR Processing, SAR Interferometry, Car-borne SAR, positioning errors, rail-based SAR, experiment, terrestrial radar interferometry, TRI, Gamma L-band SAR, ground-based SAR, GB-SAR. [Abstract] [bibtex-entry]


  2. Endrit Shehaj, Karina Wilgan, Othmar Frey, and Alain Geiger. A Collocation Framework to Retrieve Tropospheric Delays from a Combination of GNSS and InSAR. Navigation, 67(4):823-842, 2020. Keyword(s): SAR Processing, InSAR, SAR Interferometry, Persistent Scatterer Interferometry, PSI, GNSS, GPS Troposphere, Collocation, Retrieval of Tropospheric Delays, Combination of GNSS and InSAR. [Abstract] [bibtex-entry]


  3. Marion Heublein, Fadwa Alshawaf, Bastian Erdnüss, Xiao Xiang Zhu, and Stefan Hinz. Compressive sensing reconstruction of 3D wet refractivity based on GNSS and InSAR observations. Journal of Geodesy, 93(2):197-217, 2019. Keyword(s): SAR Processing, Compressive Sensing, Tropospheric Path Delay, Synthetic Aperture Radar, Atmospheric Modelling, Atmospheric modeling, Meteorology, radar interferometry, synthetic aperture radar (SAR), SAR Tomography, GNSS, InSAR, Tropospheric Wet Path Delay. [Abstract] [bibtex-entry]


  4. Karina Wilgan, Muhammad Adnan Siddique, Tazio Strozzi, Alain Geiger, and Othmar Frey. Comparison of Tropospheric Path Delay Estimates from GNSS and Space-Borne SAR Interferometry in Alpine Conditions. Remote Sensing, 11(15):1-24, July 2019. Note: 1789. Keyword(s): SAR Processing, persistent scatterer interferometry, PSI, DInSAR, multibaseline interferometry, interferometric stacking, deformation monitoring, subsidence monitoring, urban, urban remote sensing, buildings, estimation, remote sensing, synthetic aperture radar, thermal expansion, tomography, urban areas, alpine, rugged terrain, atmospheric phase, atmospheric phase screen, APS, mitigation of atmospheric phase, turbulent atmospheric phase in alpine areas, Cosmo-SkyMed, Zermatt, Mattertal, Matter valley, Switzerland, multi-baseline interferometry, GNSS, GPS, Comparison, tropospheric path delay, Collocation, Kriging. [Abstract] [bibtex-entry]


  5. Ladina Steiner, Michael Meindl, Charles Fierz, and Alain Geiger. An assessment of sub-snow GPS for quantification of snow water equivalent. The Cryosphere, 12(10):3161-3175, 2018. Keyword(s): GNSS, GPS, Snow-water equivalent, SWE, Submerged antennas. [Abstract] [bibtex-entry]


  6. Amy L. Parker, Will E. Featherstone, Nigel T. Penna, Mick S. Filmer, and Matthew C. Garthwaite. Practical Considerations before Installing Ground-Based Geodetic Infrastructure for Integrated InSAR and cGNSS Monitoring of Vertical Land Motion. Sensors, 17(8):1-20, 2017. Keyword(s): SAR Processing, GNSS, GPS, SAR Interferometry, Integration of GNSS Networks and SAR data, Persistent Scatterer Interferometry, PSI. [Abstract] [bibtex-entry]


  7. Fadwa Alshawaf, Stefan Hinz, Michael Mayer, and Franz J. Meyer. Constructing accurate maps of atmospheric water vapor by combining interferometric synthetic aperture radar and GNSS observations. Journal of Geophysical Research: Atmospheres, 120(4):1391-1403, 2015. Keyword(s): SAR Processing, atmospheric water vapor, InSAR, GNSS, Tropospheric Path Delay, Synthetic Aperture Radar, Atmospheric Modelling, Atmospheric modeling, Meteorology, radar clutter, radar imaging, radar interferometry, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  8. M. Ge, G. Gendt, M. Rothacher, C. Shi, and J. Liu. Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. Journal of Geodesy, 82(7):389-399, 2008. Keyword(s): GNSS, lobal Navigation Satellite Systems, GPS, Global Positioning System, Carrier phase, ambiguities, carrier-phase ambiguities, Precise Point Positioning, PPP. [Abstract] [bibtex-entry]


  9. E. Sansosti, P. Berardino, M. Manunta, F. Serafino, and G. Fornaro. Geometrical SAR image registration. IEEE Transactions on Geoscience and Remote Sensing, 44(10):2861-2870, October 2006. Keyword(s): SAR Processing, image registration, coregistration, InSAR, Interferometry, ENVISAT, European Remote Sensing, acquisition flight tracks, baseline spans, digital elevation model, image registration, multichannel SAR processing, satellite systems, sensitivity analysis, steep topography regions, subpixel registration, synthetic aperture radar images, two-pass interferometry, warping functions, artificial satellites, geophysical signal processing, image registration, remote sensing by radar, sensitivity analysis, synthetic aperture radar, topography (Earth). [Abstract] [bibtex-entry]


Conference articles

  1. Andreas Wiesmann, Charles L. Werner, Tazio Strozzi, Christian Matzler, Thomas Nagler, Helmut Rott, Martin Schneebeli, and Urs Wegmuller. SnowScat, X- to Ku-Band Scatterometer Development. In Proc. ESA Living Planet Symposium, June 2010. Keyword(s): SnowScat, KuScat, backscatter, hydrological techniques, radiometry, remote sensing by radar, snow, spaceborne radar, C-band SAR satellite systems, ESA CoRe-H2O mission, Ku-band scatterometer, Swiss Alps, X-band scatterometer, backscatter information, backscattering signal, dry snow cover, dual frequency radar, frequency 18 GHz, frequency 9 GHz, mobile scatterometer, snow coverage, snow liquid water content, snow structure, spaceborne active microwave remote sensing, Backscatter, Frequency, Ground support, Radar measurements, Remote sensing, Satellites, Signal generators, Snow, Spaceborne radar, Water storage, Scatterometer, Snow, backscatter, snow grain. [Abstract] [bibtex-entry]


  2. Andreas Wiesmann, Charles L. Werner, Christian Matzler, Martin Schneebeli, Tazio Strozzi, and Urs Wegmuller. Mobile X- to Ku-band Scatterometer in Support of the CoRe-H2O Mission. In Proc. IEEE Int. Geosci. Remote Sens. Symp., volume 5, pages 244-247, July 2008. Keyword(s): SnowScat, KuScat, backscatter, hydrological techniques, radiometry, remote sensing by radar, snow, spaceborne radar, C-band SAR satellite systems, ESA CoRe-H2O mission, Ku-band scatterometer, Swiss Alps, X-band scatterometer, backscatter information, backscattering signal, dry snow cover, dual frequency radar, frequency 18 GHz, frequency 9 GHz, mobile scatterometer, snow coverage, snow liquid water content, snow structure, spaceborne active microwave remote sensing, Backscatter, Frequency, Ground support, Radar measurements, Remote sensing, Satellites, Signal generators, Snow, Spaceborne radar, Water storage, Scatterometer, Snow, backscatter, snow grain. [Abstract] [bibtex-entry]


  3. John M. Dow, Ruth E. Neilan, and Chris Rizos. The International GNSS Service (IGS): Preparations for the Coming Decade. In 20th Int. Tech. Meeting of the Satellite Division of the US Inst. of Navigation, 2007. Keyword(s): GNSS, Global Navigation Satellite System, International GNSS Service, IGS, Zenith Tropospheric Delay, ZTD. [Abstract] [bibtex-entry]


  4. Andreas Wiesmann, Tazio Strozzi, Charles L. Werner, Urs Wegmuller, and Maurizio Santoro. Microwave remote sensing of alpine snow. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 1223-1227, July 2007. Keyword(s): SnowScat, KuScat, microwave measurement, remote sensing by radar, snow, ASSIST, Alpine Safety, Security and Information Services and Technologies, Alpine snow, C-band SAR, CoReH2O mission, SnowScat project, avalanche maps, avalanche warning, flood management, liquid water content, microwave remote sensing, snow coverage, snow structure, Content management, Ecosystems, Information security, Knowledge management, Microwave measurements, Remote sensing, Safety, Satellites, Snow, Space technology, ASSIST, CoReH20, SnowScat, avalanche, snow. [Abstract] [bibtex-entry]


Internal reports

  1. Malcolm Davidson, Marco Chini, Wolfgang Dierking, Samuel Djavidnia, Joerg Haarpaintner, Guillaume Hajduch, Gaia Vaglio Laurin, Marco Lavalle, Carlos Lopez Martinez, Thomas Nagler, Nazzarreno Pierdicca, and Bob Su. Copernicus L-band SAR Mission Requirements Document (MRD). Technical report 2.0, ESA/ESTEC, October 2019. Note: ESA-EOPSM-CLIS-MRD-3371. Keyword(s): L-band, ROSE-L, Copernicus, Copernicus L-band SAR, ESA, spaceborne SAR, SAR Interferometry, deformation, displacement, ground motion, geohazards, sea ice types, detection of icebergs, forest, monitoring, changes in global forest carbon stocks, carbon stocks, Agriculture, food security, mapping of water availability, water use, soil moisture, moisture, glacier, ice sheets, climate change, maritime surveillance. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:24:50 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html