BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'inertial navigation'

Articles in journal or book chapters

  1. Roberto Coscione, Irena Hajnsek, Charles Werner, and Othmar Frey. Assessing the impact of positioning errors in car-borne repeat-pass SAR interferometry with a controlled rail-based experiment. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15:8402-8415, 2022. Keyword(s): SAR Processing, SAR Interferometry, Car-borne SAR, positioning errors, rail-based SAR, experiment, terrestrial radar interferometry, TRI, Gamma L-band SAR, ground-based SAR, GB-SAR. [Abstract] [bibtex-entry]


  2. Y. Huang, F. Liu, Z. Chen, J. Li, and W. Hong. An Improved Map-Drift Algorithm for Unmanned Aerial Vehicle SAR Imaging. IEEE Geoscience and Remote Sensing Letters, pp 1-5, 2020. Keyword(s): Synthetic aperture radar, Unmanned aerial vehicles, Apertures, Azimuth, Trajectory, Electronics packaging, Doppler effect, Map-drift algorithm (MDA), motion compensation (MOCO), random sample consensus (RANSAC), unmanned aerial vehicle synthetic aperture radar (UAV SAR) imaging.. [Abstract] [bibtex-entry]


  3. L. Zhang, Z. Qiao, M. Xing, L. Yang, and Z. Bao. A Robust Motion Compensation Approach for UAV SAR Imagery. IEEE Trans. Geosci. Remote Sens., 50(8):3202-3218, August 2012. Keyword(s): autonomous aerial vehicles, geophysical image processing, geophysical techniques, maximum likelihood estimation, motion compensation, remote sensing by radar, synthetic aperture radar, robust motion compensation approach, UAV SAR imagery, unmanned aerial vehicle, synthetic aperture radar, remote sensing application, atmospheric turbulence, range invariant motion error, weighted phase gradient autofocus, nonsystematic range cell migration function, range dependent phase error, maximum likelihood WPGA algorithm, subaperture phase error, inertial navigation system, Electronics packaging, Estimation, Trajectory, Robustness, Navigation, Thyristors, Geometry, Local maximum-likelihood (LML), motion compensation (MOCO), phase gradient autofocus (PGA), synthetic aperture radar (SAR), unmanned aerial vehicle (UAV), weighted phase gradient autofocus (WPGA). [Abstract] [bibtex-entry]


  4. Roy E. Hansen, H. J. Callow, T. O. Sabo, and S. A. V. Synnes. Challenges in Seafloor Imaging and Mapping With Synthetic Aperture Sonar. IEEE Transactions on Geoscience and Remote Sensing, 49(10):3677-3687, October 2011. Keyword(s): Synthetic Aperture Sonar, SAS, bathymetry, oceanographic equipment, radar imaging, radar interferometry, seafloor phenomena, synthetic aperture sonar, underwater sound, HISAS 1030 interferometric SAS, acoustic signals, aided inertial navigation, bathymetry, centimeter resolution, coherence, grating lobes, image focusing, nonstraight tracks, ocean environment, real aperture interferometry, sea surface, seafloor imaging, seafloor mapping, shallow waters, sonar positioning, sound velocity, synthetic aperture sonar, vehicle instability, Apertures, Image resolution, Imaging, Sonar navigation, Synthetic aperture sonar, Vehicles, Interferometry, multiple reflections, navigation, nonlinear tracks, seafloor imaging, sound velocity errors, synthetic aperture radar (SAR), synthetic aperture sonar (SAS), topography errors. [Abstract] [bibtex-entry]


  5. Mengdao Xing, Xiuwei Jiang, Renbiao Wu, Feng Zhou, and Zheng Bao. Motion Compensation for UAV SAR Based on Raw Radar Data. IEEE Transactions on Geoscience and Remote Sensing, 47(8):2870-2883, August 2009. Keyword(s): SAR Processing, Motion Compensation. MoComp, 3D MOCO method, 3D motion error analysis, Doppler rate estimate, UAV SAR, Airborne SAR, aircraft properties, atmospheric turbulence, forward velocity, inertial navigation system, line-of-sight direction displacement, motion parameters extraction, raw radar data, synthetic aperture radar systems, unmanned aerial vehicle, UAV, error analysis, geophysical techniques, inertial navigation, radar imaging, remotely operated vehicles, synthetic aperture radar. [Abstract] [bibtex-entry]


  6. Hubert-M.J. Cantalloube and Pascale Dubois-Fernandez. Airborne X-band SAR imaging with 10 cm resolution: technical challenge and preliminary results. IEE Proceedings - Radar, Sonar and Navigation, 153(2):163-176, April 2006. Keyword(s): SAR Processing, Doppler radar, airborne radar, antenna radiation patterns, frequency-domain synthesis, image resolution, microwave antennas, radar antennas, radar cross-sections, radar imaging, radar resolution, radar tracking, synthetic aperture radar, 1.2 GHz, Ku-band, RAMSES, bandwidth, X-band, Airborne SAR, antenna pattern compensation, carrier trajectory, cross-range resolution, deterministic motion, fast-frequency domain synthesis, isotropic point-like echo, phase-tracking, Autofocus, Residual Motion Errors, Motion Compensation, MoComp, Time-Domain Back-Projection, TDBP, temporal-domain back-projection synthesis. [Abstract] [bibtex-entry]


  7. Joćo Moreira. A New Method Of Aircraft Motion Error Extraction From Radar Raw Data For Real Time Motion Compensation. IEEE Transactions on Geoscience and Remote Sensing, 28(4):620-626, July 1990. Keyword(s): SAR Processing, Autofocus, Motion Compensation, MoComp, Residual Motion Errors, Airborne SAR, ESAR. [Abstract] [bibtex-entry]


Conference articles

  1. Roberto Coscione, Irena Hajnsek, and Othmar Frey. Trajectory Uncertainty in Repeat-Pass SAR Interferometry: A Case Study. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 338-341, 2019. Keyword(s): SAR Processing, Synthetic aperture radar (SAR), SAR interferometry, mobile mapping, car-borne SAR, UAV, airborne SAR, terrestrial radar interferometer, repeat-pass interferometry, differential interferometry, DInSAR, SAR imaging, INS, GNSS, GPS, Trajectory Uncertainty. [Abstract] [bibtex-entry]


  2. Roberto Coscione, Irena Hajnsek, and Othmar Frey. An experimental car-borne SAR System: measurement setup and positioning error analysis. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 6364-6367, 2018. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, dechirp-on-receive, FMCW, Frequency-modulated continous wave, Ground-based SAR, car-borne SAR, CARSAR, InSAR, DInSAR, geophysical techniques, ground-based SAR system, radar interferometry, synthetic aperture radar, GAMMA Portable Radar Interferometer (GPRI), GPRI, GPRI-II, interferometric technique, Coherence, Correlation, Interferometry, agile platform, airborne SAR, Inertial Naviation System (INS), Global Navigation Satellite System (GNSS), INS/GNSS, iMAR. [Abstract] [bibtex-entry]


  3. Hubert-M.J. Cantalloube and Pascale Dubois-Fernandez. Airborne X-band SAR imaging with 10 cm resolution - technical challenge and preliminary results. In , volume 1, pages 185-187, July 2003. Keyword(s): SAR Processing, Motion Compensation, Autofocus, radar cross-sections, radar imaging, radar resolution, remote sensing by radar, synthetic aperture radar 2 1/2 D surface modelling, Doppler algorithms, Ku bands, RAMSES, X-Band, X-band SAR imaging, Airborne SAR, antenna pattern compensation method, back-injection synthesis algorithm, carrier trajectory, clutter appearance, differential GPS-hybridized inertial navigation unit, high resolution clutters, isotropic echoes, matching cross-range resolution, optical surface modelling, phase tracking, point-like echoes, Range Migration Algorithm, resolution cell, synthetic aperture radar, TDBP, Time-Domain Back-Projection, temporal-domain synthesis algorithm, texture simulations, omega-k algorithm. [Abstract] [bibtex-entry]


  4. Carole E. Nahum. Autofocusing using multiscale local correlation. In Proc. SPIE, volume 3497, pages 21-30, 1998. Keyword(s): SAR Processing, Autofocus, SAR Autofocus, MoComp, Motion Compensation, Map-Drift Autofocus, airborne radar, radar imaging, synthetic aperture radar, SAR data, SAR images, X-band airborne SAR system, arbitrary residual phase error, local-quadratic map-drift autofocus, phase error estimation, quadratic errors, small data blocks, uncompensated phase errors, Antennas, Azimuth, Bandwidth, Doppler effect, Measurement uncertainty, Radar, Trajectory, autofocus, map-drift, motion compensation, motion errors, synthetic aperture radar. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:23:44 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html