BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'Forecasting'

Articles in journal or book chapters

  1. Guodong Jin, Kaiyu Liu, Dacheng Liu, Da Liang, Heng Zhang, Naiming Ou, Yanyan Zhang, Yunkai Deng, Chuang Li, and Robert Wang. An Advanced Phase Synchronization Scheme for LT-1. IEEE Transactions on Geoscience and Remote Sensing, 58(3):1735-1746, March 2020. Keyword(s): Synchronization, Satellites, Spaceborne radar, Synthetic aperture radar, Radar antennas, Oscillators, Bistatic synthetic aperture radar (SAR), phase error, phase synchronization. [Abstract] [bibtex-entry]


  2. Marion Heublein, Fadwa Alshawaf, Bastian Erdnüss, Xiao Xiang Zhu, and Stefan Hinz. Compressive sensing reconstruction of 3D wet refractivity based on GNSS and InSAR observations. Journal of Geodesy, 93(2):197-217, 2019. Keyword(s): SAR Processing, Compressive Sensing, Tropospheric Path Delay, Synthetic Aperture Radar, Atmospheric Modelling, Atmospheric modeling, Meteorology, radar interferometry, synthetic aperture radar (SAR), SAR Tomography, GNSS, InSAR, Tropospheric Wet Path Delay. [Abstract] [bibtex-entry]


  3. Martina Lagasio, Antonio Parodi, Luca Pulvirenti, Agostino N. Meroni, Giorgio Boni, Nazzareno Pierdicca, Frank S. Marzano, Lorenzo Luini, Giovanna Venuti, Eugenio Realini, Andrea Gatti, Giulio Tagliaferro, Stefano Barindelli, Andrea Monti Guarnieri, Klodiana Goga, Olivier Terzo, Alessio Rucci, Emanuele Passera, Dieter Kranzlmueller, and Bjorn Rommen. A Synergistic Use of a High-Resolution Numerical Weather Prediction Model and High-Resolution Earth Observation Products to Improve Precipitation Forecast. Remote Sensing, 11(20), 2019. Keyword(s): SAR Processing, Weather, Forecasting, Precipitation Forecasting, SAR, GNSS, Zenith Path Delay, Troposphere. [Abstract] [bibtex-entry]


  4. Karina Wilgan, Fabian Hurter, Alain Geiger, Witold Rohm, and Jaroslaw Bosy. Tropospheric refractivity and zenith path delays from least-squares collocation of meteorological and GNSS data. Journal of Geodesy, 91(2):117-134, 2017. [Abstract] [bibtex-entry]


  5. Fadwa Alshawaf, T. Fuhrmann, A. Knöpfler, X. Luo, Michael Mayer, Stefan Hinz, and B. Heck. Accurate Estimation of Atmospheric Water Vapor Using GNSS Observations and Surface Meteorological Data. IEEE Transactions on Geoscience and Remote Sensing, 53(7):3764-3771, July 2015. Keyword(s): atmospheric humidity, atmospheric temperature, remote sensing, satellite navigation, time series, remote sensing data, temporal variation, spatial variation, Global Navigation Satellite System, time series, precipitable water vapor content, precise point positioning, absolute precipitable water vapor, GNSS observations, GNSS site, surface temperature measurements, GNSS-based delay, MEdium Resolution Imaging Spectrometer sensor, mean RMS value, GNSS-based total precipitable water vapor, Weather Research and Forecasting Modeling System, WRF model simulations, atmospheric water vapor estimation, surface meteorological data, Global Positioning System, Delays, Temperature measurement, Atmospheric modeling, Atmospheric measurements, Satellites, Atmospheric sounding, Global Navigation Satellite System(s) (GNSS), MEdium Resolution Imaging Spectrometer (MERIS), precipitable water vapor (PWV), Weather Research and Forecasting (WRF), Atmospheric sounding, Global Navigation Satellite System(s) (GNSS), MEdium Resolution Imaging Spectrometer (MERIS), precipitable water vapor (PWV), Weather Research and Forecasting (WRF). [Abstract] [bibtex-entry]


  6. Rafael Caduff, Andreas Wiesmann, Yves Bühler, and Christine Pielmeier. Continuous monitoring of snowpack displacement at high spatial and temporal resolution with terrestrial radar interferometry. Geophysical Research Letters, 42(3):813-820, 2015. Note: 2014GL062442. Keyword(s): GPRI-II, Remote sensing, Dynamics, Instruments and techniques, Monitoring, forecasting, prediction, Methods, terrestrial radar interferometry, remote sensing of snow, snowpack displacement monitoring, full-depth snow glide avalanche. [bibtex-entry]


  7. Ramon F. Hanssen, Tammy M. Weckwerth, Howard A. Zebker, and Roland Klees. High-Resolution Water Vapor Mapping from Interferometric Radar Measurements. Science, 283(5406):1297-1299, 1999. Keyword(s): Troposphere, Water Vapor, InSAR. [Abstract] [bibtex-entry]


  8. Howard A. Zebker, Paul A. Rosen, Richard M. Goldstein, Andrew Gabriel, and Charles L. Werner. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. Journal of Geophysical Research: Solid Earth, 99(B10):19617-19634, 1994. Keyword(s): SAR Processing, Interferometry, SAR interferometry, differential SAR interferometry, DInSAR, Deformation Mapping, Deformation Monitoring, ERS-1, Displacement, Surface Displacement, Surface Deformation, Spaceborne SAR, C-band, Earthquake, Landers earthquake, Fault Slip, Remote sensing, Seismic instruments and networks, Earthquake source observations, Earthquake interaction, forecasting, and prediction. [Abstract] [bibtex-entry]


Conference articles

  1. G. Gomba, X. Y. Cong, and M. Eineder. Correction of ionospheric and tropospheric path delay for L-band interferograms. In Proc. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), pages 310-313, July 2015. Keyword(s): SAR Processing, split-spectrum, split-spectrum interferometry, split-band, split-band interferometry, ionospheric electromagnetic wave propagation, ionospheric techniques, refractive index, remote sensing by radar, synthetic aperture radar, tropospheric electromagnetic wave propagation, weather forecasting, L-band interferograms, SAR data, differential atmospheric path delay, direct integration method, error source, geophysical processes, ground deformation signal, height-dependent tropospheric effects, ionospheric path delay correction, nominal value, numerical weather prediction data, radio wave delay, radio wave propagation, refractivity index variation, slant range distance, split-spectrum method, stratified delay, topography signal, tropospheric path delay correction, Atmospheric measurements, Delays, Dispersion, Ionosphere, L-band, Synthetic aperture radar, InSAR, SAR ionospheric effects, ionosphere estimation. [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:23:23 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html