BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'Postprocessing'

Articles in journal or book chapters

  1. G. Margarit, J. J. Mallorqui, and L. Pipia. Polarimetric Characterization and Temporal Stability Analysis of Urban Target Scattering. IEEE_J_GRS, 48(4):2038-2048, April 2010. Keyword(s): geophysical image processing, radar polarimetry, synthetic aperture radar, vegetation mapping, GRaphical Electromagnetic Computing SAR data, RADARSAT-2, TerraSAR-X, geometrical configuration, geometry-scattering, high resolution images, land classification, nonprobabilistic models, polarimetric capabilities, polarimetric characterization, polarimetric-dispersion properties, quasideterministic scattering behavior, synthetic aperture radar images, temporal stability analysis, urban target scattering, urban-image postprocessing, Analytical models, Computational modeling, Electromagnetic modeling, Electromagnetic scattering, Geometry, Image analysis, Radar scattering, Solid modeling, Stability analysis, Synthetic aperture radar, Polarimetry, synthetic aperture radar (SAR) simulation, urban scattering. [bibtex-entry]


  2. G. Fornaro, D. Reale, and F. Serafino. Four-Dimensional SAR Imaging for Height Estimation and Monitoring of Single and Double Scatterers. IEEE Transactions on Geoscience and Remote Sensing, 47(1):224-237, January 2009. Keyword(s): SAR Processing, SAR Tomography, Tomography, geophysical signal processing, geophysical techniques, height measurement, radar signal processing, remote sensing by radar, synthetic aperture radar4D SAR imaging application, 4D space-velocity imaging, SAR signal postprocessing, differential SAR tomography, double scatterer monitoring, ground scatterers, height estimation, interfering target separation, mean deformation velocity, multipass SAR interferometry, nonlinear temporal deformations, single scatterer monitoring, slow deformation velocity, synthetic aperture radar, target contribution superposition. [Abstract] [bibtex-entry]


  3. J. Groen, Roy E. Hansen, H. J. Callow, J. C. Sabel, and T. O. Sabo. Shadow Enhancement in Synthetic Aperture Sonar Using Fixed Focusing. IEEE Journal of Oceanic Engineering, 34(3):269-284, July 2009. Keyword(s): Synthetic Aperture Sonar, SAS, image enhancement, sonar imaging, sonar target recognition, synthetic aperture sonar, HUGIN autonomous underwater vehicle, fixed focus shadow enhancement, shadow clarity, synthetic aperture sonar imaging, target recognition, widebeam synthetic aperture imaging systems, Acoustics, beamforming, focusing, imaging, shadow, synthetic aperture sonar (SAS). [Abstract] [bibtex-entry]


  4. Karlus A. Cāmara de Macedo and Rolf Scheiber. Precise topography- and aperture-dependent motion compensation for airborne SAR. IEEE Geosci. Remote Sens. Lett., 2(2):172-176, 2005. Keyword(s): SAR Processing, PTA-MoComp, Postprocessing, Motion Compensation, Topography-Based Motion Compensation, Chirp Scaling Algorithm, Extended Chirp Scaling Algorithm, fast Fourier transform-based postprocessing methodology, FFT, D-InSAR, German Aerospace Center, DLR, airborne repeat-pass interferometry, differential interferometry, geometric fidelity, motion errors, phase accuracy, residual phase errors, topographic heights, Topography, DEM, Terrain, wide beamwidth, Airborne SAR, ESAR, P-Band, Interferometry. [Abstract] [bibtex-entry]


  5. Richard Rau and James H. McClellan. Analytic Models and Postprocessing Techniques for UWB SAR. IEEE Transactions on Aerospace and Electronic Systems, 36(4):1058-1074, October 2000. Keyword(s): SAR Processing, Back-Projection, Ultra-Wideband SAR, TDBP, Time-Domain Back-Projection. [Abstract] [bibtex-entry]


Conference articles

  1. Roberto Coscione, Irena Hajnsek, and Othmar Frey. An experimental car-borne SAR System: measurement setup and positioning error analysis. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 6364-6367, 2018. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, dechirp-on-receive, FMCW, Frequency-modulated continous wave, Ground-based SAR, car-borne SAR, CARSAR, InSAR, DInSAR, geophysical techniques, ground-based SAR system, radar interferometry, synthetic aperture radar, GAMMA Portable Radar Interferometer (GPRI), GPRI, GPRI-II, interferometric technique, Coherence, Correlation, Interferometry, agile platform, airborne SAR, Inertial Naviation System (INS), Global Navigation Satellite System (GNSS), INS/GNSS, iMAR. [Abstract] [bibtex-entry]


  2. Karlus A. Cāmara de Macedo, Christian Andres, and Rolf Scheiber. On the requirements of SAR processing for airborne differential interferometry. In Proc. IEEE Int. Geosci. Remote Sens. Symp., volume 4, pages 2693-2696, July 2005. Keyword(s): SAR Processing, PTA-MoComp, Postprocessing, Motion Compensation, Topography-Based Motion Compensation, Chirp Scaling Algorithm, Extended Chirp Scaling Algorithm, fast Fourier transform-based postprocessing methodology, FFT, D-InSAR, German Aerospace Center, DLR, airborne repeat-pass interferometry, differential interferometry, geometric fidelity, motion errors, phase accuracy, residual phase errors, topographic heights, Topography, DEM, Terrain, wide beamwidth, Airborne SAR, ESAR. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:24:30 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html