BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'agricultural area'

Thesis

  1. S. Samie Esfahany. Exploitation of distributed scatterers in synthetic aperture radar interferometry. PhD thesis, TUDelft, 2017. [Abstract] [bibtex-entry]


Articles in journal or book chapters

  1. Francescopaolo Sica, Andrea Pulella, Matteo Nannini, Muriel Pinheiro, and Paola Rizzoli. Repeat-pass SAR interferometry for land cover classification: A methodology using Sentinel-1 Short-Time-Series. Remote Sensing of Environment, 232:111277, 2019. Keyword(s): Land cover classification, SAR, Interferometric coherence, Sentinel-1, Temporal decorrelation. [Abstract] [bibtex-entry]


  2. R. Magagi, A. A. Berg, K. Goita, S. Belair, T. J. Jackson, B. Toth, A. Walker, H. McNairn, P. E. O'Neill, Mahta Moghaddam, I. Gherboudj, A. Colliander, M. H. Cosh, Mariko S. Burgin, J. B. Fisher, S. B. Kim, I. Mladenova, N. Djamai, L. P. B. Rousseau, J. Belanger, J. Shang, and A. Merzouki. Canadian Experiment for Soil Moisture in 2010 (CanEx-SM10): Overview and Preliminary Results. IEEE Transactions on Geoscience and Remote Sensing, 51(1):347-363, January 2013. Keyword(s): land surface temperature, remote sensing, soil, vegetation, AD 2010, AD 2010 05 31 to 2010 06, AMSR-E soil moisture, CanEx-SM10, Canada, Canadian experiment, National Snow and Ice Data Center, SMOS data, SMOS mission, SMOS soil moisture product, Saskatchewan, active microwave measurement, agricultural area, airborne L-band brightness temperatures, airborne L-band radiometer data, airborne platform, boreal forested area, ocean salinity, passive microwave measurement, radio frequency, reflected soil moisture measurements, satellite platform, soil condition, soil ground-based measurements, soil moisture, soil temperature profiles, vegetation characteristics, vegetation condition, Moisture measurement, Satellites, Soil measurements, Soil moisture, Temperature measurement, Vegetation mapping, Agricultural and boreal forested areas, Soil Moisture and Ocean Salinity (SMOS), brightness temperature, soil moisture, validation. [Abstract] [bibtex-entry]


  3. Stefano Tebaldini and Andrea Monti Guarnieri. Methods and Performances for Multi-Pass SAR Interferometry, chapter 18, pages 329-356. InTech, 2010. Keyword(s): SAR Processing, Modelling Interferogram Stacks, PSI, Persistent Scatterer Interferometry, Differential SAR Interferometry, D-InSAR, InSAR, SAR Interferometry, Interferometry, Decorrelation, Temporal Decorrelation, C-band measurement, DInSAR, ERS-1 data, Italy, Rome, agricultural areas, differential interferometric SAR, distributed targets, geometrical decorrelation, interferogram stack modeling, permanent scatterers, progressive ground motion, progressively decorrelating targets, sinusoidal ground motion, synthetic aperture radar interferometry, temporal decorrelation, radiowave interferometry, remote sensing by radar, synthetic aperture radar, vegetation mapping;. [Abstract] [bibtex-entry]


  4. Fabio Rocca. Modeling Interferogram Stacks. IEEE Trans. Geosci. Remote Sens., 45(10):3289-3299, October 2007. Keyword(s): SAR Processing, PSI, Persistent Scatterer Interferometry, Differential SAR Interferometry, D-InSAR, InSAR, SAR Interferometry, Interferometry, Decorrelation, Temporal Decorrelation, C-band measurement, DInSAR, ERS-1 data, Italy, Rome, agricultural areas, differential interferometric SAR, distributed targets, geometrical decorrelation, interferogram stack modeling, permanent scatterers, progressive ground motion, progressively decorrelating targets, sinusoidal ground motion, synthetic aperture radar interferometry, temporal decorrelation, radiowave interferometry, remote sensing by radar, synthetic aperture radar, vegetation mapping;. [Abstract] [bibtex-entry]


  5. A. Reigber and R. Scheiber. Airborne differential SAR interferometry: first results at L-band. IEEE Trans. Geosci. Remote Sens., 41(6):1516-1520, 2003. Keyword(s): SAR Processing, airborne radar, radiowave interferometry, remote sensing by radar, synthetic aperture radar, vegetation mapping, Earth surface, Germany, L-Band, Oberpfaffenhofen test site, agricultural areas, airborne differential SAR interferometry, airborne sensors, atmospheric effects, centimetre-scale deformations, critical region monitoring, data acquisition intervals, forested areas, glacier flows, interferometric repeat-pass mode, landslides, long-term decorrelation, motion compensation, motion errors, phase artifacts, ESAR, Motion Compensation, Interferometric SAR, Interferometry, D-InSAR. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:22:34 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html