BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'advanced land observing satellite'

Articles in journal or book chapters

  1. Elvira Musico, Claudio Cesaroni, Luca Spogli, John P. Merryman Boncori, De Franceschi Giorgiana, and Roberto Seu. The Total Electron Content From InSAR and GNSS: A Midlatitude Study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(5):1725-1733, May 2018. Keyword(s): SAR Processing, Ionosphere, Global Positioning System, atmospheric techniques, radar interferometry, rain, remote sensing by radar, satellite navigation, synthetic aperture radar, ALOS-PALSAR, GNSS experimental measurements, GNSS receivers, InSAR images, L-band InSAR, RING network, Rete Integrata Nazionale GPS network, TEC variability, advanced land observing satellite, array type L-band synthetic aperture radar, correlation coefficient, dense network, global navigation satellite system receivers, interferometric phase, interferometric synthetic aperture radar, ionospheric information, midlatitude study, night-time case studies, reference true ionospheric TEC, total electron content, tropospheric contribution, Azimuth, Correlation, Earth, Global navigation satellite system, Ionosphere, Receivers, Synthetic aperture radar, Global positioning system, ionosphere, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  2. NI. The Total Electron Content From InSAR and GNSS: A Midlatitude Study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(5):1725-1733, May 2018. Keyword(s): SAR Processing, Ionosphere, Global Positioning System, atmospheric techniques, radar interferometry, rain, remote sensing by radar, satellite navigation, synthetic aperture radar, ALOS-PALSAR, GNSS experimental measurements, GNSS receivers, InSAR images, L-band InSAR, RING network, Rete Integrata Nazionale GPS network, TEC variability, advanced land observing satellite, array type L-band synthetic aperture radar, correlation coefficient, dense network, global navigation satellite system receivers, interferometric phase, interferometric synthetic aperture radar, ionospheric information, midlatitude study, night-time case studies, reference true ionospheric TEC, total electron content, tropospheric contribution, Azimuth, Correlation, Earth, Global navigation satellite system, Ionosphere, Receivers, Synthetic aperture radar, Global positioning system, ionosphere, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  3. G. Gomba and F. De Zan. Bayesian Data Combination for the Estimation of Ionospheric Effects in SAR Interferograms. IEEE_J_GRS, 55(11):6582-6593, November 2017. Keyword(s): SAR Processing, split-spectrum, split-spectrum interferometry, split-band, split-band interferometry, Bayes methods, Faraday effect, fractals, inverse problems, ionospheric electromagnetic wave propagation, radar imaging, radar interferometry, remote sensing by radar, synthetic aperture radar, Bayesian data combination, Bayesian inverse problem, Faraday rotation method, SAR images, SAR interferograms, advanced land observing satellite phased array type L-band SAR L-band images, azimuth mutual shifts, data-based model parameter estimation, differential ionospheric phase screen, error source, estimation accuracy, information sources, interferometric pair images, ionosphere turbulence, ionospheric effects estimation, ionospheric propagation path delay, physically realistic fractal modeling, range variations, sensitive azimuth shifts, simple split-spectrum method, small-scale azimuth variations, synthetic aperture radar interferograms, Azimuth, Estimation, Extraterrestrial measurements, Ionosphere, Synthetic aperture radar, Ionosphere estimation, SAR ionospheric effects, interferometric synthetic aperture radar (SAR), methods\textquoteright combination. [Abstract] [bibtex-entry]


  4. G. Gomba, A. Parizzi, F. De Zan, M. Eineder, and R. Bamler. Toward Operational Compensation of Ionospheric Effects in SAR Interferograms: The Split-Spectrum Method. IEEE_J_GRS, 54(3):1446-1461, March 2016. Keyword(s): SAR Processing, split-spectrum, split-spectrum interferometry, split-band, split-band interferometry, ionospheric electromagnetic wave propagation, synthetic aperture radar, L-band interferograms, L-band synthetic aperture radar interferometric pairs, SAR interferograms, advanced land observing satellite phased-array, differential ionospheric path delay, geophysical processes, ground deformation signals, ionospheric effects operational compensation, ionospheric phase, split-spectrum method, tropospheric path delay, Accuracy, Azimuth, Coherence, Delays, Estimation, Ionosphere, Synthetic aperture radar, Interferometric synthetic aperture radar (InSAR), ionosphere estimation, split spectrum, synthetic aperture radar (SAR) ionospheric effects. [Abstract] [bibtex-entry]


  5. R. Iglesias, D. Monells, X. Fabregas, J. J. Mallorqui, A. Aguasca, and C. Lopez-Martinez. Phase Quality Optimization in Polarimetric Differential SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 52(5):2875-2888, May 2014. Keyword(s): geophysical techniques, optimisation, radar interferometry, radar polarimetry, remote sensing by radar, synthetic aperture radar, ALOS, DInSAR processing, DInSAR techniques, RADARSAT-2, TerraSAR-X, advanced land observing satellite, amplitude dispersion case, amplitude dispersion maps, classical single-polarimetric approach, coherence case, differential SAR interferometry, differential synthetic aperture radar interferometry, final DInSAR result density, final DInSAR result reliability, fully polarimetric data unavailability, ground-based SAR fully polarimetric data, interferometric technique merging, orbital SAR fully polarimetric data, phase quality optimization, pixel candidate number threefold, pixel phase quality, pixel selection process, polarimetric capabilities, polarimetric differential SAR interferometry, polarimetric optimization techniques, polarimetric technique merging, polarimetrically optimized coherence, satellite launch, single-polarimetric case, Amplitude dispersion optimization, coherence optimization, differential synthetic aperture radar (SAR) interferometry (DInSAR), polarimetric DInSAR (PolDInSAR), polarimetry. [Abstract] [bibtex-entry]


  6. Mariko S. Burgin, D. Clewley, R. M. Lucas, and Mahta Moghaddam. A Generalized Radar Backscattering Model Based on Wave Theory for Multilayer Multispecies Vegetation. IEEE Transactions on Geoscience and Remote Sensing, 49(12):4832-4845, December 2011. Keyword(s): backscatter, radar polarimetry, remote sensing by radar, vegetation, AIRSAR data, ALOS PALSAR, Advanced Land Observing Satellite, Airborne Synthetic Aperture Radar data, Australia, NASA JPL, NASA Jet Propulsion Laboratory, Phased Arrayed L-band Synthetic Aperture Radar data, Queensland, distorted Born approximation, generalized radar backscattering model, microwave interaction, multilayer multispecies vegetation, polarimetric radar backscattering coefficients, single species discrete scatterer model, soil moisture, structurally complex vegetation, surface model, surface roughness parameterization, two layer crown trunk models, wave theory, wooded savanna sites, Backscatter, Data models, Mathematical model, Scattering, Synthetic aperture radar, Vegetation, Forest scattering, multispecies vegetation, synthetic aperture radar (SAR) backscattering, wave theory. [Abstract] [bibtex-entry]


  7. Michael Jehle, Maurice Rüegg, Lukas Zuberbühler, David Small, and Erich Meier. Measurement of Ionospheric Faraday Rotation in Simulated and Real Spaceborne SAR Data. IEEE Trans. Geosci. Remote Sens., 47(5):1512-1523, May 2009. Keyword(s): SAR Processing, Ionosphere, ALOS PALSAR, Advanced Land Observing Satellite, Earth's magnetic field, PALSAR data, Phased Array L-band Synthetic Aperture Radar, focused radar images, frequency-modulated electromagnetic wave traverse, ionospheric Faraday Rotation measurement, radar polarimetry, range-compressed, signal chirp bandwidth effects, signal path delays, spaceborne SAR data, spaceborne synthetic aperture radar, total electron content, TEC, Faraday effect, ionospheric electromagnetic wave propagation, radar polarimetry, radar signal processing, remote sensing by radar, synthetic aperture radar. [Abstract] [bibtex-entry]


  8. Jong-Sen Lee, T.L. Ainsworth, J.P. Kelly, and C. Lopez-Martinez. Evaluation and Bias Removal of Multilook Effect on Entropy/Alpha/Anisotropy in Polarimetric SAR Decomposition. IEEE Trans. Geosci. Remote Sens., 46(10):3039-3052, Oct. 2008. Keyword(s): Monte Carlo methods, geophysical techniques, radar interferometry, radar polarimetry, remote sensing by radar, synthetic aperture radar, vegetationGerman Aerospace Research Center, JPL, Jet Propulsion Laboratory, L-band Advanced Land Observing Satellite, Monte Carlo simulation, airborne X-band polarimetric SAR, airborne interferometric SAR, alpha estimation, anisotropy estimation, bias removal algorithm, entropy estimation, forest, geophysical parameter estimation, grassland, multilook processing, phased array type L-band SAR, polarimetric SAR decomposition, scattering mechanisms, urban returns. [Abstract] [bibtex-entry]


  9. Franz J. Meyer and J.B. Nicoll. Prediction, Detection, and Correction of Faraday Rotation in Full-Polarimetric L-Band SAR Data. IEEE Trans. Geosci. Remote Sens., 46(10):3076-3086, Oct. 2008. Keyword(s): Faraday effect, electromagnetic wave polarisation, ionospheric disturbances, ionospheric electromagnetic wave propagation, ionospheric techniques, radar polarimetry, radiowave propagation, remote sensing by radar, spaceborne radar, synthetic aperture radarAdvanced Land Observing Satellite, Faraday rotation correction, Faraday rotation detection, Faraday rotation estimation, Faraday rotation prediction, PALSAR, SAR data quality degradation, data continuity, full polarimetric L-band SAR data, geophysical parameter recovery accuracy, kilometer scale ionospheric disturbances, spaceborne L-band SAR instrument, synthetic aperture radar. [Abstract] [bibtex-entry]


Conference articles

  1. G. Gomba, F. De Zan, and A. Parizzi. Ionospheric Phase Screen and Ionospheric Azimuth Shift Estimation Combining the Split-Spectrum and Multi-Squint Methods. In Proc. EUSAR 2016: 11th European Conf. Synthetic Aperture Radar, pages 1-4, June 2016. Keyword(s): SAR Processing, split-spectrum, split-spectrum interferometry, split-band, split-band interferometry, ionospheric electromagnetic wave propagation, synthetic aperture radar, L-band interferograms, L-band synthetic aperture radar interferometric pairs, SAR interferograms, advanced land observing satellite phased-array, differential ionospheric path delay, geophysical processes, ground deformation signals, ionospheric effects operational compensation, ionospheric phase, split-spectrum method, tropospheric path delay, Accuracy, Azimuth, Coherence, Delays, Estimation, Ionosphere, Synthetic aperture radar, Interferometric synthetic aperture radar (InSAR), ionosphere estimation, split spectrum, synthetic aperture radar (SAR) ionospheric effects. [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:22:34 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html